1. bookVolume 29 (2019): Issue 1 (March 2019)
    Exploring Complex and Big Data (special section, pp. 7-91), Johann Gamper, Robert Wrembel (Eds.)
Journal Details
License
Format
Journal
eISSN
2083-8492
First Published
05 Apr 2007
Publication timeframe
4 times per year
Languages
English
Open Access

Recommendation systems with the quantum k–NN and Grover algorithms for data processing

Published Online: 29 Mar 2019
Volume & Issue: Volume 29 (2019) - Issue 1 (March 2019) - Exploring Complex and Big Data (special section, pp. 7-91), Johann Gamper, Robert Wrembel (Eds.)
Page range: 139 - 150
Received: 20 Nov 2018
Accepted: 18 Jan 2019
Journal Details
License
Format
Journal
eISSN
2083-8492
First Published
05 Apr 2007
Publication timeframe
4 times per year
Languages
English

Aaronson, S. and Gottesman, D. (2004). Improved simulation of stabilizer circuits, Physical Review A70(5): 052328, DOI: 10.1103/PhysRevA.70.052328.10.1103/PhysRevA.70.052328Search in Google Scholar

Alpaydin, E. (2004). Introduction to Machine Learning (Adaptive Computation and Machine Learning), Massachusetts Institute of Technology Press, Cambridge, MA.Search in Google Scholar

Arikan, E. (2003). An information-theoretic analysis of Grover’s algorithm, in A.S. Shumovsky and V.I. Rupasov (Eds.), Quantum Communication and Information Technologies, Springer Netherlands, Dordrecht, pp. 339–347.10.1109/ISIT.2003.1228418Search in Google Scholar

Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee, G., Patterson, D., Rabkin, A., Stoica, I. and Zaharia, M. (2010). A view of cloud computing, Communications of the Association for Computing Machinery53(4): 50–58, DOI: 10.1145/1721654.1721672.10.1145/1721654.1721672Open DOISearch in Google Scholar

Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P., Sleator, T., Smolin, J.A. and Weinfurter, H. (1995). Elementary gates for quantum computation, Physical Review A52(5): 3457–3467, DOI: 10.1103/PhysRevA.52.3457.10.1103/PhysRevA.52.34579912645Open DOISearch in Google Scholar

Biham, E., Biham, O., Biron, D., Grassl, M. and Lidar, D. (1999). Grover’s quantum search algorithm for an arbitrary initial amplitude distribution, Physical Review60(4): 2742–2745, DOI: 10.1103/PhysRevA.60.2742.10.1103/PhysRevA.60.2742Open DOISearch in Google Scholar

Brassard, G. and Hoyer, P. (1997). An exact quantum polynomial-time algorithm for Simon’s problem, Proceedings of the 5th Israeli Symposium on Theory of Computing and Systems, Ramat Gan, Israel, DOI: 10.1109/ISTCS.1997.595153.10.1109/ISTCS.1997.595153Open DOISearch in Google Scholar

Busemeyer, J. and Bruza, P. (2012). Quantum Models of Cognition and Decision, Cambridge University Press, Cambridge.10.1017/CBO9780511997716Search in Google Scholar

Chakrabarty, I., Khan, S. and Singh, V. (2017). Dynamic grover search: Applications in recommendation systems and optimization problems, Quantum Information Processing16(6): 153, DOI: 10.1007/s11128-017-1600-4.10.1007/s11128-017-1600-4Open DOISearch in Google Scholar

D’Hondt, E. and Panangaden, P. (2006). Quantum weakest preconditions, Mathematical Structures in Computer Science16(3): 429–451.10.1017/S0960129506005251Search in Google Scholar

Galindo, A. and Martin-Delgado, M. A. (2000). A family of Grover’s quantum searching algorithms, Physical Review A62(6): 062303, DOI: 10.1103/PhysRevA.62.062303.10.1103/PhysRevA.62.062303Search in Google Scholar

Galindo, A. and Martin-Delgado, M.A. (2002). Information and computation: Classical and quantum aspects, Reviews of Modern Physics74(2): 347–423, DOI: 10.1103/RevModPhys.74.347.10.1103/RevModPhys.74.347Open DOISearch in Google Scholar

Gielerak, R. and Sawerwain, M. (2010). Generalised quantum weakest preconditions, Quantum Information Processing9(4): 441–449, DOI: 10.1007/s11128-009-0151-8.10.1007/s11128-009-0151-8Open DOISearch in Google Scholar

Grover, L.K. (1996). A fast quantum mechanical algorithm for database search, Proceedings of the 28th Annual ACM Symposium on Theory of Computing, STOC’96, Philadelphia, PA, USA, pp. 212–219, DOI: 10.1145/237814.237866.10.1145/237814.237866Open DOISearch in Google Scholar

Hechenbichler, K. and Schliep, K. (2004). Weighted k-nearest-neighbor techniques and ordinal classification, Technical report, Ludwig-Maximilians-Universität München, München, https://epub.ub.uni-muenchen.de/1769/1/paper_399.pdf.Search in Google Scholar

IBM (2018). Q Experience, https://quantumexperience.ng.bluemix.net/.Search in Google Scholar

Li, C.-K., Roberts, R. and Yin, X. (2013). Decomposition of unitary matrices and quantum gates, International Journal of Quantum Information11(1): 1350015, DOI: 10.1142/S0219749913500159.10.1142/S0219749913500159Search in Google Scholar

Montanaro, A. (2017). Quantum pattern matching fast on average, Alghoritmica: An International Journal in Computer Science77(1): 16–39, DOI: 10.1007/s00453-015-0060-4.10.1007/s00453-015-0060-4Open DOISearch in Google Scholar

Nielsen, M. and Chuang, I. (2010). Quantum Computation and Quantum Information: 10th Anniversary Edition, Cambridge University Press, Cambridge.10.1017/CBO9780511976667Search in Google Scholar

Nielsen, P. (2016). Big data analytics—a brief research synthesis, in L. Borzemski et al. (Eds.), Information Systems Architecture and Technology, Springer International Publishing, Cham, pp. 3–9.10.1007/978-3-319-28555-9_1Search in Google Scholar

OMDb (2018). Homepage, http://www.omdbapi.com/.Search in Google Scholar

Pinkse, P., Goorden, S., Horstmann, M., Skoric, B. and Mosk, A. (2013). Quantum pattern recognition, Conference on Lasers and Electro-Optics Europe (CLEO EUROPE/IQEC) and International Quantum Electronics Conference, Munich, Germany, p. 1–1.Search in Google Scholar

Santucci, E. (2017). Quantum minimum distance classifier, Entropy19(12): 659, DOI: 10.3390/e19120659.10.3390/e19120659Open DOISearch in Google Scholar

Sawerwain, M. and Wróblewski, M. (2019). Application of quantum k-nn and Grover’s algorithms for recommendation big-data system, in L. Borzemski et al. (Eds.), Information Systems Architecture and Technology, Springer International Publishing, Cham, pp. 235–244.10.1007/978-3-319-99981-4_22Search in Google Scholar

Schuld, M., Sinayskiy, I. and Petruccione, F. (2014). Quantum computing for pattern classification, in D.-N. Pham and S.-B. Park (Eds.), PRICAI 2014: Trends in Artificial Intelligence, Springer International Publishing, Cham, pp. 208–220.10.1007/978-3-319-13560-1_17Search in Google Scholar

Sergioli, G., Bosyk, G.M., Santucci, E. and Giuntini, R. (2017). A quantum-inspired version of the classification problem, International Journal of Theoretical Physics56(12): 3880–3888, DOI: 10.1007/s10773-017-3371-1.10.1007/s10773-017-3371-1Open DOISearch in Google Scholar

Sergioli, G., Santucci, E., Didaci, L., Miszczak, J.A. and Giuntini, R. (2018). A quantum-inspired version of the nearest mean classifier, Soft Computing22(3): 691–705, DOI: 10.1007/s00500-016-2478-2.10.1007/s00500-016-2478-2Open DOISearch in Google Scholar

Shende, V. and Markov, I.L. (2009). On the CNOT-cost of TOFFOLI gates, Quantum Information & Computation9(5): 461–486.10.26421/QIC8.5-6-8Search in Google Scholar

Shor, P. (1999). Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM Review41(2): 303–332, DOI: 10.1137/S0036144598347011.10.1137/S0036144598347011Open DOISearch in Google Scholar

Steane, A. (1998). Quantum computing, Reports on Progress in Physics61(2): 117–173, DOI: 10.1088/0034-4885/61/2/002.10.1088/0034-4885/61/2/002Open DOISearch in Google Scholar

Stefanowski, J., Krawiec, K. and Wrembel, R. (2017). Exploring complex and big data, International Journal of Applied Mathematics and Computer Science27(4): 669–679, DOI: 10.1515/amcs-2017-0046.10.1515/amcs-2017-0046Open DOISearch in Google Scholar

Trugenberger, C.A. (2002). Quantum pattern recognition, Quantum Information Processing1(6): 471–493, DOI: 10.1023/A:1024022632303.10.1023/A:1024022632303Open DOISearch in Google Scholar

Veloso, B., Malheiro, B. and Burguillo, J.C. (2015). A multi-agent brokerage platform for media content recommendation, International Journal of Applied Mathematics and Computer Science25(3): 513–527, DOI: 10.1515/amcs-2015-0038.10.1515/amcs-2015-0038Open DOISearch in Google Scholar

Walther, P., Resch, K.J., Rudolph, T., Schenck, E., Weinfurter, H., Vedral, V., Aspelmeyer, M. and Zeilinger, A. (2005). Experimental one-way quantum computing, Nature434(0): 169–176, DOI: 10.1038/nature03347.10.1038/nature0334715758991Search in Google Scholar

Wiebe, N., Kapoor, A. and Svore, K. (2015). Quantum algorithms for nearest-neighbor methods for supervised and unsupervised learning, Quantum Information and Computation15(3–4): 316–356.10.26421/QIC15.3-4-7Search in Google Scholar

Wiśniewska, J. and Sawerwain, M. (2018). Recognizing the pattern of binary Hermitian matrices by quantum knn and SVM methods, Vietnam Journal of Computer Science5(3): 197–204, DOI: 10.1007/s40595-018-0115-y.10.1007/s40595-018-0115-yOpen DOISearch in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo