Open Access

An unscented Kalman filter in designing dynamic GMDH neural networks for robust fault detection


Cite

Back, A. and Tsoi, A. (1991). FIR and IIR synapses. A new neural network architectures for time series modelling, Neural Computation 3(3): 375-385.Search in Google Scholar

Bernstein, D. (2005). Matrix Mathematics, Princeton University Press, Princeton, NJ.Search in Google Scholar

Ding, S. (2008). Model-based Fault Diagnosis Techniques:Design Schemes, Algorithms, and Tools, Springer-Verlag, Berlin/Heidelberg.Search in Google Scholar

Elman, J. (1990). Finding structure in time, Cognitive Science14(2): 179-211.10.1207/s15516709cog1402_1Search in Google Scholar

Fasconi, P., Gori, M. and Soda, G. (1992). Local feedback multilayered networks, Neural Computation4(1): 120-130.10.1162/neco.1992.4.1.120Search in Google Scholar

Gori, M., Bengio, Y. and De Mori, R. (1989). BPS: A learning algorithm for capturing the dynamic nature of speech, InternationalJoint Conference on Neural Networks, Washington,DC, USA, pp. 417-423.Search in Google Scholar

Gupta, M., Liang, J. and Homma, N. (2003). Static and DynamicNeural Networks, John Wiley & Sons, Hoboken, NJ.Search in Google Scholar

Haykin, S. (2001). Kalman Filtering and Neural Networks, John Wiley&Sons, New York, NY.10.1002/0471221546Search in Google Scholar

Haykin, S. (2009). Neural Networks and Learning Machines, Prentice Hall, New York, NY.Search in Google Scholar

Ichalal, D., Marx, B., Ragot, J. and Maquin, D. (2012). New fault tolerant control strategies for nonlinear Takagi-Sugeno systems, International Journal of AppliedMathematics and Computer Science 22(1): 197-210, DOI: 10.2478/v10006-012-0015-8.10.2478/v10006-012-0015-8Search in Google Scholar

Isermann, R. (2005). Fault-Diagnosis Systems: An Introductionfrom Fault Detection to Fault Tolerance, Springer-Verlag, Heidelberg/Berlin.10.1007/3-540-30368-5_18Search in Google Scholar

Ivakhnenko, A. and Mueller, J. (1995). Self-organization of nets of active neurons, System Analysis Modelling Simulation20(1-2): 93-106.Search in Google Scholar

Jordan,M. and Bishop, C. (1997). Neural networks, in A. Tucker (Ed.), CRC Handbook of Computer Science, CRC Press, Boca Raton, FL, pp. 536-556.Search in Google Scholar

Julier, S. and Uhlmann, J. (2004). Unscented filtering and nonlinear estimation, Proceedings of the IEEE92(3): 401-422.10.1109/JPROC.2003.823141Search in Google Scholar

Korbicz, J. and Kościelny, J. (Eds.) (2010). Modeling, Diagnosticsand Process Control: Implementation in the DiaSterSystem, Springer-Verlag, Berlin.10.1007/978-3-642-16653-2Search in Google Scholar

Korbicz, J., Kościelny, J., Kowalczuk, Z. and Cholewa,W. (Eds.) (2004). Fault Diagnosis. Models, Artificial Intelligence,Applications, Springer-Verlag, Berlin.10.1007/978-3-642-18615-8Search in Google Scholar

Korbicz, J. and Mrugalski, M. (2008). Confidence estimation of GMDH neural networks and its application in fault detection system, International Journal of System Science39(8): 783-800.10.1080/00207720701847745Search in Google Scholar

Lee, T. and Jiang, Z. (2006). On uniform global asymptotic stability of nonlinear discrete-time systems with applications, IEEE Transactions on Automatic Control51(10): 1644-1660.10.1109/TAC.2006.882770Search in Google Scholar

Ljung, L. (1999). System Identification: Theory for the User, Prentice Hall PTR, Upper Saddle River, NJ.Search in Google Scholar

Montes de Oca, S., Puig, V., Witczak, M. and Dziekan, Ł. (2012). Fault-tolerant control strategy for actuator faults using LPV techniques: Application to a two degree of freedom helicopter, International Journal of Applied Mathematicsand Computer Science 22(1): 161-171, DOI: 10.2478/v10006-012-0012-y.10.2478/v10006-012-0012-ySearch in Google Scholar

Mrugalski, M. and Korbicz, J. (2007). Least mean square vs. outer bounding ellipsoid algorithm in confidence estimation of the GMDH neural networks, in B.Search in Google Scholar

Beliczynski, A. Dzielinski, M. Iwanowski, and B. Ribeiro (Eds.), Adaptive and Natural Computing Algorithms,Part 2, Lecture Notes in Computer Science, Vol. 4432, Physica-Verlag, Heidelberg, pp. 19-26.Search in Google Scholar

Mrugalski, M. and Korbicz, J. (2011). GMDH neural networks, in B. Wilamowski and J. Irwin (Eds.), The Industrial ElectronicsHandbook, 2nd Edn., Vol. 5, CRC Press, Taylor Francis Group, Boca Raton, FL, pp. 8-1-8-21.10.1201/b10604-11Search in Google Scholar

Mrugalski, M. and Witczak, M. (2012). State-space GMDH neural networks for actuator robust fault diagnosis, Advancesin Electrical and Computer Engineering 12(3): 65-72.10.4316/aece.2012.03010Search in Google Scholar

Mrugalski, M., Arinton, E. and Korbicz, J. (2003). Dynamic GMDH type neural networks, in L. Rutkowski and J.10.1007/978-3-7908-1902-1_108Search in Google Scholar

Kacprzyk (Eds.), Neural Networks and Soft Computing, Heidelberg, Physica-Verlag, pp. 698-703.Search in Google Scholar

Mrugalski, M., Witczak, M. and Korbicz, J. (2008). Confidence estimation of the multi-layer perceptron and its application in fault detection systems, Engineering Applications of ArtificialIntelligence 21(6): 895-906.10.1016/j.engappai.2007.09.008Search in Google Scholar

Niemann, H.H. (2012). A model-based approach to fault-tolerant control, International Journal of AppliedMathematics and Computer Science 22(1): 67-86, DOI: 10.2478/v10006-012-0005-x.10.2478/v10006-012-0005-xSearch in Google Scholar

Noura, H., Theilliol, D., Ponsart, J. and Chamseddine, A. (2009). Fault-tolerant Control Systems: Design and Practical Applications, Springer-Verlag, London.10.1007/978-1-84882-653-3Search in Google Scholar

Palade, V., Bocaniala, C. and Jain, L. (2006). ComputationalIntelligence in Fault Diagnosis, Springer-Verlag, London.10.1007/978-1-84628-631-5Search in Google Scholar

Pan, Y., Sung, S. and Lee, J. (2001). Data-based construction of feedback-corrected nonlinear prediction model using feedback neural networks, Control Engineering Practice9(8): 859-867.10.1016/S0967-0661(01)00050-8Search in Google Scholar

Patan, K., Witczak, M. and Korbicz, J. (2008). Towards robustness in neural network based fault diagnosis, International Journal of Applied Mathematicsand Computer Science 18(4): 443-454, DOI: 10.2478/v10006-008-0039-2.10.2478/v10006-008-0039-2Search in Google Scholar

Patton, R., Frank, P. and Clark, R. (2000). Non-linear SystemsIdentification. From Classical Approaches to Neural Networksand Fuzzy Models, Springer-Verlag, Berlin.Search in Google Scholar

Teixeira, B., Torres, L., Aguirre, L. and Bernstein, D. (2010). On unscented Kalman filtering with state interval constraints, Journal of Process Control 20(1): 45-57.10.1016/j.jprocont.2009.10.007Search in Google Scholar

Williams, R. and Zipser, D. (1989). A learning algorithm for continually running fully recurrent neural networks, NeuralComputation 1(2): 270-280.10.1162/neco.1989.1.2.270Search in Google Scholar

Witczak, M. (2007). Modelling and Estimation Strategies forFault Diagnosis of Non-Linear Systems. From Analyticalto Soft Computing Approaches, Springer-Verlag, Berlin.Search in Google Scholar

Witczak, M., Korbicz, J., Mrugalski, M. and Patton, R. (2006). A GMDH neural network based approach to robust fault detection and its application to solve the Damadics benchmark problem, Control Engineering Practice14(6): 671-683.10.1016/j.conengprac.2005.04.007Search in Google Scholar

Witczak, M. and Prętki, P. (2007). Design of an extended unknown input observer with stochastic robustness techniques and evolutionary algorithms, International Journalof Control 80(5): 749-762.10.1080/00207170601178108Search in Google Scholar

Zamarreño, J. M. and Vega, P. (1998). State space neural network. Properties and application, Neural Networks11(6): 1099-1112.Search in Google Scholar

eISSN:
2083-8492
ISSN:
1641-876X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Mathematics, Applied Mathematics