1. bookVolume 47 (2020): Issue 3 (September 2020)
Journal Details
License
Format
Journal
eISSN
2719-5384
First Published
05 Nov 2014
Publication timeframe
4 times per year
Languages
English
access type Open Access

Somatic Genomic Changes in the Formation of Differentiated Thyroid Carcinoma

Published Online: 14 Oct 2020
Volume & Issue: Volume 47 (2020) - Issue 3 (September 2020)
Page range: 53 - 60
Received: 05 Feb 2020
Accepted: 14 Feb 2020
Journal Details
License
Format
Journal
eISSN
2719-5384
First Published
05 Nov 2014
Publication timeframe
4 times per year
Languages
English
Abstract

Globally, the diffuse goiter affects more than 10% of the population and in some regions is endemic. Thyroid nodules are found in approximately 5% of the population using the oldest method for thyroid examination – palpation. When performing ultrasound screening, this percentage increases significantly and reaches between 20 and 75% of the total population. Thyroid carcinoma is a rare malignancy and accounts for up to 1% of all malignant tumors. It is the most common endocrine cancer and is clinically manifested as a thyroid nodule. Somatic mutations play an important role in its development. Differentiation of benign and malignant thyroid nodules is of great importance due to the different therapeutic approach. Therefore, new diagnostic tools are sought to help distinguish the two. Despite the progress in our knowledge of carcinogenesis in recent years, a number of key issues still remain unanswered. The establishment of new rare somatic mutations can improve pre-surgical diagnosis and optimize post-operative strategies for the treatment of thyroid carcinoma. Next-generation sequencing (NGS) allows for extensive mutation and genome rearrangements tracking. The results obtained with NGS provide the basis for the development of new approach for systematic genetic screening, at prevention, early diagnosis, accurate prognosis, and targeted therapy of this disorder.

Keywords

1. Eng C. Familial Papillary Thyroid Cancer – Many Syndromes, Too Many Genes? J Clin Endocrinol Metab [Internet]. 2000;85(5):1755–7. Available from: http://press.endocrine.org/doi/abs/10.1210/jcem.85.5.663210.1210/jcem.85.5.663210843147Search in Google Scholar

2. Jindrichova S, Vlcek P, Bendlova B. [Genetic causes of the thyroid carcinomas]. Cas Lek Ces [Internet]. 2004;143(10):664–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15584614Search in Google Scholar

3. Moses W, Weng J, Kebebew E. Prevalence, clinicopathologic features, and somatic genetic mutation profile in familial versus sporadic nonmedullary thyroid cancer. Thyroid [Internet]. 2011;21(4):367–71. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2119044410.1089/thy.2010.0256307033721190444Search in Google Scholar

4. Rios A, Rodriguez JM, Navas D et al. Family Screening in Familial Papillary Carcinoma: The Early Detection of Thyroid Disease. Ann Surg Oncol. 2016/03/30. 2016;23(8):2564–70.Search in Google Scholar

5. Dupuy A, Simon RM. Critical Review of Published Microarray Studies for Cancer Outcome and Guidelines on Statistical Analysis and Reporting. JNCI J Natl Cancer Inst [Internet]. 2007;99(2):147–57. Available from: http://dx.doi.org/10.1093/jnci/djk01810.1093/jnci/djk01817227998Search in Google Scholar

6. Lin R-Y. Thyroid cancer stem cells. Nat Rev Endocrinol [Internet]. 2011;7:609. Available from: http://dx.doi.org/10.1038/nrendo.2011.127.10.1038/nrendo.2011.12721788969Search in Google Scholar

7. Kondo T, Ezzat S, Asa SL. Pathogenetic mechanisms in thyroid follicular-cell neoplasia. Nat Rev Cancer. 2006;6(4):292.10.1038/nrc183616557281Search in Google Scholar

8. Parameswaran R, Brooks S, Sadler GP. Molecular pathogenesis of follicular cell derived thyroid cancers. Int J Surg. 2010;8(3):186–93.10.1016/j.ijsu.2010.01.00520097316Search in Google Scholar

9. Takano T. Fetal cell carcinogenesis of the thyroid: theory and practice. In: Seminars in cancer biology. Elsevier; 2007. p. 233–40.10.1016/j.semcancer.2006.02.00116569505Search in Google Scholar

10. Friedman S, Lu M, Schultz A et al. CD133+ anaplastic thyroid cancer cells initiate tumors in immunodeficient mice and are regulated by thyrotropin. PLoS One. 2009;4(4):e5395.10.1371/journal.pone.0005395267140019404394Search in Google Scholar

11. Zito G, Richiusa P, Bommarito A et al. In vitro identification and characterization of CD133pos cancer stem-like cells in anaplastic thyroid carcinoma cell lines. PLoS One. 2008;3(10):e3544.10.1371/journal.pone.0003544256882118958156Search in Google Scholar

12. Schweppe RE, Klopper JP, Korch C et al. Deoxyribonucleic acid profiling analysis of 40 human thyroid cancer cell lines reveals cross-contamination resulting in cell line redundancy and misidentification. J Clin Endocrinol Metab. 2008;93(11):4331–41.10.1210/jc.2008-1102258256918713817Search in Google Scholar

13. Todaro M, Iovino F, Eterno V et al. Tumorigenic and metastatic activity of human thyroid cancer stem cells. Cancer Res. 2010;70(21):8874–85.10.1158/0008-5472.CAN-10-199420959469Search in Google Scholar

14. Giordano TJ. The Cancer Genome Atlas Research Network: A Sight to Behold. Endocr Pathol [Internet]. 2014 Dec;25(4):362–5. Available from: https://doi.org/10.1007/s12022-014-9345-410.1007/s12022-014-9345-425367656Search in Google Scholar

15. Lawrence: Mutational heterogeneity in cancer and... – Google Hayka [Internet]. [cited 2020 Jan 2]. Available from: https://scholar.google.com/scholar_lookup?title=Mutational heterogeneity in cancer and the search for new cancer-associated genes&author=MS. Lawrence&author=P. Stojanov&author=P. Polak&journal=Nature&volume=499&pages=214-218&publication_year=2013Search in Google Scholar

16. Nikiforova MN, Nikiforov YE. Molecular genetics of thyroid cancer: implications for diagnosis, treatment and prognosis. Expert Rev Mol Diagn. 2007/12/20. 2008;8(1):83–95.Search in Google Scholar

17. Ahn HY, Chung YJ, Kim BS et al. Clinical significance of the BRAF V600E mutation in multifocal papillary thyroid carcinoma in Korea. Ahn HY, Chung YJ, Kim BS, Kang KH, Seok JW, Kim HS, et al., editors. Surgery [Internet]. 2014;155(4):689–95. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=2461262310.1016/j.surg.2013.12.02524612623Search in Google Scholar

18. Xing M, Westra WH, Tufano RP et al. BRAF mutation predicts a poorer clinical prognosis for papillary thyroid cancer. J Clin Endocrinol Metab. 2005;90(12):6373–9.10.1210/jc.2005-098716174717Search in Google Scholar

19. Xing M, Alzahrani AS, Carson KA et al. Association between BRAF V600E mutation and mortality in patients with papillary thyroid cancer. Jama. 2013/04/11. 2013;309(14):1493–501.Search in Google Scholar

20. Xing M. BRAF mutation in thyroid cancer. Endocr Relat Cancer. 2005;12(2):245–62.10.1677/erc.1.097815947100Search in Google Scholar

21. Kim TH, Park YJ, Lim JA et al. The association of the BRAF(V600E) mutation with prognostic factors and poor clinical outcome in papillary thyroid cancer: a meta-analysis. Cancer. 2011/09/02. 2012;118(7):1764–73.Search in Google Scholar

22. Kim KH, Kang DW, Kim SH et al. Mutations of the BRAF gene in papillary thyroid carcinoma in a Korean population. Yonsei Med J. 2004;45:818–21.10.3349/ymj.2004.45.5.81815515191Search in Google Scholar

23. Nikiforov YE, Nikiforova MN. Molecular genetics and diagnosis of thyroid cancer. Nat Rev Endocrinol. 2011/09/01. 2011;7(10):569–80.Search in Google Scholar

24. Kouba E, Ford A, Brown CG et al. Detection of BRAF V600E Mutations With Next-Generation Sequencing in Infarcted Thyroid Carcinomas After Fine-Needle Aspiration. Am J Clin Pathol [Internet]. 2018 Jul 3 [cited 2020 Jan 5];150(2):177–85. Available from: https://academic.oup.com/ajcp/article/150/2/177/503250310.1093/ajcp/aqy045848297029868707Search in Google Scholar

25. Yu FX, Hu MX, Zhao HX et al. Precise Detection of Gene Mutations in Fine-Needle Aspiration Specimens of the Papillary Thyroid Microcarcinoma Using Next-Generation Sequencing. Int J Endocrinol. 2019;2019.10.1155/2019/4723958639953830915113Search in Google Scholar

26. Couto JP, Prazeres H, Castro P et al. How molecular pathology is changing and will change the therapeutics of patients with follicular cell-derived thyroid cancer. J Clin Pathol. 2009;62(5):414–21.10.1136/jcp.2008.05534319147628Search in Google Scholar

27. Garcia-Rostan G, Zhao H, Camp RL et al. Ras mutations are associated with aggressive tumor phenotypes and poor prognosis in thyroid cancer. J Clin Oncol. 2003;21(17):3226–35.10.1200/JCO.2003.10.13012947056Search in Google Scholar

28. Lacroix L, Lazar V, Michiels S et al. Follicular thyroid tumors with the PAX8-PPARγ1 rearrangement display characteristic genetic alterations. Am J Pathol. 2005;167(1):223–31.10.1016/S0002-9440(10)62967-7Search in Google Scholar

29. Nikiforova MN, Lynch RA, Biddinger PWet al. RAS point mutations and PAX8-PPARγ rearrangement in thyroid tumors: evidence for distinct molecular pathways in thyroid follicular carcinoma. J Clin Endocrinol Metab. 2003;88(5):2318–26.10.1210/jc.2002-02190712727991Search in Google Scholar

30. Gandhi M, Evdokimova V, Nikiforov YE. Mechanisms of chromosomal rearrangements in solid tumors: the model of papillary thyroid carcinoma. Mol Cell Endocrinol. 2010;321(1):36–43.10.1016/j.mce.2009.09.013284991019766698Search in Google Scholar

31. Unger K, Zitzelsberger H, Salvatore G et al. Heterogeneity in the distribution of RET/PTC rearrangements within individual post-Chernobyl papillary thyroid carcinomas. J Clin Endocrinol Metab. 2004;89(9):4272–9.10.1210/jc.2003-03187015356021Search in Google Scholar

32. Zhu Z, Ciampi R, Nikiforova MN et al. Prevalence of RET/PTC rearrangements in thyroid papillary carcinomas: effects of the detection methods and genetic heterogeneity. J Clin Endocrinol Metab. 2006;91(9):3603–10.10.1210/jc.2006-100616772343Search in Google Scholar

33. Ciampi R, Nikiforov YE. RET/PTC rearrangements and BRAF mutations in thyroid tumorigenesis. Endocrinology. 2007;148(3):936–41.10.1210/en.2006-092116946010Search in Google Scholar

34. Knauf JA, Kuroda H, Basu S, Fagin JA. RET/PTC-induced dedifferentiation of thyroid cells is mediated through Y1062 signaling through SHC-RAS-MAP kinase. Oncogene. 2003;22(28):4406.10.1038/sj.onc.120660212853977Search in Google Scholar

35. Witt RL, Ferris RL, Pribitkin EA et al. Diagnosis and management of differentiated thyroid cancer using molecular biology. Laryngoscope. 2013;123(4):1059–64.10.1002/lary.2383823404751Search in Google Scholar

36. Xing M. Genetic alterations in the phosphatidylinositol-3 kinase/Akt pathway in thyroid cancer. Thyroid. 2010;20(7):697–706.10.1089/thy.2010.1646293533520578891Search in Google Scholar

37. Nikiforova MN, Wald AI, Roy S et al. Targeted next-generation sequencing panel (ThyroSeq) for detection of mutations in thyroid cancer. J Clin Endocrinol Metab. 2013;98(11):E1852–60.10.1210/jc.2013-2292381625823979959Search in Google Scholar

38. Garcia-Rostan G, Camp RL, Herrero A et al. β-catenin dys-regulation in thyroid neoplasms: down-regulation, aberrant nuclear expression, and CTNNB1 exon 3 mutations are markers for aggressive tumor phenotypes and poor prognosis. Am J Pathol. 2001;158(3):987–96.10.1016/S0002-9440(10)64045-XSearch in Google Scholar

39. Salajegheh A, Vosgha H, Rahman MA et al. Interactive role of miR-126 on VEGF-A and progression of papillary and undifferentiated thyroid carcinoma. Hum Pathol. 2016 May 1;51:75–85.10.1016/j.humpath.2015.12.01827067785Search in Google Scholar

40. Yoruker EE, Terzioglu D, Teksoz S et al. MicroRNA expression profiles in papillary thyroid carcinoma, benign thyroid nodules and healthy controls. J Cancer. 2016;7(7):803–9.10.7150/jca.13898486079627162538Search in Google Scholar

41. Lee JC, Zhao JT, Clifton-Bligh RJ et al. MicroRNA-222 and MicroRNA-146b are tissue and circulating biomarkers of recurrent papillary thyroid cancer. Cancer. 2013 Dec 15;119(24):4358–65.10.1002/cncr.2825424301304Search in Google Scholar

42. Xiang D, Tian B, Yang T, Li Z. miR-222 expression is correlated with the ATA risk stratifications in papillary thyroid carcinomas. Medicine (Baltimore). 2019 Jun 1;98(25):e16050.10.1097/MD.0000000000016050663697531232941Search in Google Scholar

43. Pallante P, Battista S, Pierantoni GM, Fusco A. Deregulation of microRNA expression in thyroid neoplasias. Pallante P, Battista S, Pierantoni GM, Fusco A, editors. Nat Rev Endocrinol [Internet]. 2013/11/20. 10(2):88–101. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=2424722010.1038/nrendo.2013.22324247220Search in Google Scholar

44. He H, Jazdzewski K, Li W et al. The role of microRNA genes in papillary thyroid carcinoma. Proc Natl Acad Sci U S A. 2005 Dec 27;102(52):19075–80.10.1073/pnas.0509603102132320916365291Search in Google Scholar

45. Zhang J, Wang J, Zhao F et al MicroRNA-21 (miR-21) represses tumor suppressor PTEN and promotes growth and invasion in non-small cell lung cancer (NSCLC). Clin Chim Acta [Internet]. 2010 Jun 3 [cited 2020 Jan 5];411(11–12):846–52. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2022323110.1016/j.cca.2010.02.07420223231Search in Google Scholar

46. Hu J, Li C, Liu C et al. Expressions of miRNAs in papillary thyroid carcinoma and their associations with the clinical characteristics of PTC. Cancer Biomark [Internet]. 2017 [cited 2020 Jan 5];18(1):87–94. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2808501310.3233/CBM-16172328085013Search in Google Scholar

47. Swierniak M, Pfeifer A, Stokowy T et al. Somatic mutation profiling of follicular thyroid cancer by next generation sequencing. Mol Cell Endocrinol [Internet]. 2016 Sep 15 [cited 2020 Jan 2];433:130–7. Available from: https://www.sciencedirect.com/science/article/pii/S030372071630207610.1016/j.mce.2016.06.00727283500Search in Google Scholar

48. Lu Z, Zhang Y, Feng D et al. Targeted next generation sequencing identifies somatic mutations and gene fusions in papillary thyroid carcinoma. Oncotarget. 2017;8(28):45784–92.10.18632/oncotarget.17412554222728507274Search in Google Scholar

49. Nikiforov YE, Steward DL, Carty SE et al. Performance of a Multigene Genomic Classifier in Thyroid Nodules with Indeterminate Cytology: A Prospective Blinded Multicenter Study. JAMA Oncol. 2019 Feb 1;5(2):204–12.10.1001/jamaoncol.2018.4616643956230419129Search in Google Scholar

50. Nikiforov YE, Baloch ZW. Clinical validation of the ThyroSeq v3 genomic classifier in thyroid nodules with indeterminate FNA cytology. Vol. 127, Cancer Cytopathology. John Wiley and Sons Inc.; 2019. p. 225–30.10.1002/cncy.22112651934830811896Search in Google Scholar

51. Nicholson KJ, Roberts MS, McCoy KL et al. Molecular Testing Versus Diagnostic Lobectomy in Bethesda III/IV Thyroid Nodules: A Cost-Effectiveness Analysis. Thyroid. 2019 Sep 1;29(9):1237–43.10.1089/thy.2018.0779736625531407625Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo