Open Access

Development of a Biomechanical Human Model for Safety Analysis of the Operators of Self-Propelled Mining Machines


Cite

In the paper, the authors presented an elaboration of the biomechanical model of a human in a sitting position for the dynamic tests related to the impact loads acting on operators of self-propelled mining machines. Here, the human body was replaced with a one-dimensional multi-mass model (in the form of concentrated masses connected with elastic and damping elements). The models of this type are currently used to study ergonomics in vehicles. However, their use is limited because they are adapted to much lower dynamic loads than those acting on the operator in accident situations in mines. Many models of this type, in which the stiffness and damping characteristics of the elements are constant, have been described in the literature. Due to the specificity of the analysed loads acting on the operator, the literature studies were mainly focused on models for vertical forces analysis. By developing non-linear stiffness characteristics, in the currently used car seat ergonomics linear biomechanical models, it was possible to use simple multi-mass models with several degrees of freedom to analyse the effects of dynamic excitation characterised by large displacements. The validation of the developed characteristics was performed using a full-size dummy in a sitting position positioned in the cabin, on the operator’s seat.