Open Access

Adaptation and Application of a Polarisation Curve Test Protocol for a Commercial Pem Electrolyser on Cell and Stack Level


Cite

Der Sozialdemokratischen Partei Deutschlands (SPD). BÜNDNIS 90/DIE GRÜNEN und den Freien Demokraten, Koalitionsvertrag 2021 – 2025: mehr fortschritt wagen Bündnis für Freiheit Gerechtigkeit und Nachhaltigkeit. 2021 Search in Google Scholar

European Commission. Hydrogen: The EU’s hydrogen strategy explores the potential for renewable hydrogen to help decarbonise the EU in a cost-effective way [Internet]. 2022 [cited 2022 Nov 06]; Available from: https://ec.europa.eu/info/index_en Search in Google Scholar

Bertuccioli L, Chan A, Hart D, Lehner F, Madden B, Standen E. Study on development of water electrolysis in the EU: Fuel Cells and hydrogen Joint Undertaking. 2014 Search in Google Scholar

Lettenmeier P. Entwicklung und Integration neuartiger Komponenten für Polymerelektrolytmembran- (PEM) Elektrolyseure [PhD Dissertation]. Stuttgart: Fakultät Energie-, Verfahrens- und Biotechnik der Universität Stuttgart. 2018 Search in Google Scholar

Abomazid AM, El-Taweel NA, Farag HEZ. Novel Analytical Approach for Parameters Identification of PEM Electrolyzer. IEEE Transactions on Industrial Informatics. Sept. 2022; 18(9): 5870-5881. doi: 10.1109/TII.2021.3132941 Search in Google Scholar

Selamet ÖF, Acar MC, Mat MD, Kaplan Y. Effects of operating parameters on the performance of a high-pressure proton exchange membrane electrolyzer. Int. J. Energy Res. 2013; 37: 457–467. https://doi.org/10.1002/er.2942 Search in Google Scholar

Smolinka T, Ojong E, Garche J. Hydrogen Production from Renewable Energies—Electrolyzer Technologies. Electrochemical Energy Storage for Renewable Sources and Grid Balancing. Elsevier; 2015. DOI 10.1016/B978–0–444–62616–5.00008–5. Search in Google Scholar

Tjarks G. H, Stolten D, Wessling M. PEM-Elektrolyse-Systeme zur Anwendung in Power-to-Gas Anlagen. Forschungszentrum Julich GmbH, Zentralbibliothek (Schriften des Forschungszentrums Julich / Reihe Energie & Umwelt: Reihe Energie & Umwelt). 2017. – ISBN 9783958062177 Search in Google Scholar

Bender G, Carmo M, Smolinka T, Gago A, Danilovic N, Mueller M, Ganci F, Fallisch A, Lettenmeier P, Friedrich K A, Ayers K, Pivovar B, Mergel J, Stolten D. Initial approaches in benchmarking and round robin testing for proton exchange membrane water electrolyzers. International Journal of Hydrogen Energy. 2019; 44: 9174–9187. https://doi.org/10.1016/j.ijhydene.2019.02.074 Search in Google Scholar

European European Commission, Joint Research Centre, Tsotridis G, Pilenga A. EU harmonized protocols for testing of low temperature water electrolysis. Publications Office of the European Union; 2021. Available from: doi/10.2760/58880 Search in Google Scholar

Malkow T, Pilenga A, Tsotridis G, De Marco G. EU harmonised polarisation curve test method for low-temperature water electrolysis. Publications Office of the European Union; 2018. Available from: doi:10.2760/179509 Search in Google Scholar

Godula-Jopek, A. Hydrogen production By electrolysis. Weinheim: Wiley-VCH-Verl., 2015 Search in Google Scholar

Mori M, Mržljak T, Drobnič B, Sekavčnik M. Integral Characteristics of Hydrogen Production in Alkaline Electrolysers. Strojniski Vestnik. Aug 2013; 59(10):585-594. doi: 10.5545/sv-jme.2012.858 Search in Google Scholar

Espinosa-López M, Darras C, Poggi P, Glises R, Baucour P, Rakotondrainibe A, Besse S, Serre-Combe P. Modelling and experimental validation of a 46 kW PEM high pressure water electrolyzer. Renewable Energy. 2018; 119: 160–173. https://doi.org/10.1016/j.renene.2017.11.081 Search in Google Scholar

Bensmann, B. Systemanalyse der Druckwasser-Elektrolyse im Kontext [PhD Dissertation]. Magdeburg: Fakultät für Verfahrens- und Systemtechnik der Otto-von-Guericke-Universität Magdeburg. 2017 Search in Google Scholar

Feng Q, Yuan X, Liu G, Wei B, Zhang Z, Li H, Wang H. A review of proton exchange membrane water electrolysis on degradation mechanisms and mitigation strategies. Journal of Power Sources. 2017; 366: 33–55. https://doi.org/10.1016/j.jpowsour.2017.09.006 Search in Google Scholar

Bernt M. Analysis of Voltage Losses and Degradation Phenomena in PEM Water Electrolyzers [PhD Dissertation]. Munich: Fakultät für Chemie der Technischen Universität München. 2018 Search in Google Scholar

Amores E, Rodríguez J, Oviedo, Lucas-Consuegra A. Development of an operation strategy for hydrogen production using solar PV energy based on fluid dynamic aspects. Open Engineering. 2017; 7(1)1: 41–152. doi: 10.1515/eng–2017–0020 Search in Google Scholar

Bitter R, Mohiuddin T, Nawrocki M. LabVIEW: Advanced programming techniques. Crc Press; 2006 Search in Google Scholar

Stähler M, Stähler A, Scheepers F, Carmo M, Lehnert W, Stolten D. Impact of porous transport layer compression on hydrogen permeation. PEM water electrolysis. 2020; 45(7): 4008-4014. Search in Google Scholar

Merwe J. Characterisation of a proton exchange membrane electrolyser using electrochemical impedance spectroscopy [PhD Dissertation]. Potchefstroom: School of Electrical, Electronic and Computer Engineering North-West University. 2012 Search in Google Scholar

Bessarabov D, Millet P. PEM Water Electrolysis [Internet]. 1th ed. Elsevier; 2018. Chapter 2, Key Performance Indicators; [cited 2022 Sep 30]. pp. 33–60. Available from: https://www.elsevier.com/books/pem-water-electrolysis/pollet/978-0-08-102830-8 Search in Google Scholar

Siracusano S, Trocino S, Briguglio N, Baglio V, Aricò AS. Electrochemical Impedance Spectroscopy as a Diagnostic Tool in Polymer Electrolyte Membrane Electrolysis. Materials (Basel). 2018; 11(8):1368. doi: 10.3390/ma11081368 Search in Google Scholar