Open Access

Experimental Analysis of Transverse Stiffness Distribution of Helical Compression Springs


Cite

1. Cieplok G, Wójcik K. Conditions for self-synchronization of inertial vibrators of vibratory conveyors in general motion. Journal of Theoretical and Applied Mechanics. 2020;58(2): 513–524. https://doi.org/10.15632/jtam-pl/11902310.15632/jtam-pl/119023 Search in Google Scholar

2. Lee CM, Goverdovskiy VN. A multi-stage high-speed railroad vibration isolation system with ‘negative’ stiffness. Journal of Sound and Vibration. 2012;331(4): 914–921. https://doi.org/10.1016/j.jsv.2011.09.01410.1016/j.jsv.2011.09.014 Search in Google Scholar

3. Lu Z., Wang X., Yue K., Wei J., Yang Z. Coupling model and vibration simulations of railway vehicles and running gear bearings with multitype defects. Mechanism and Machine Theory. 2021;157: 104215.https://doi.org/10.1016/j.mechmachtheory.2020.10421510.1016/j.mechmachtheory.2020.104215 Search in Google Scholar

4. Vazquez-Gonzalez B., Silva-Navarro G. Evaluation of the Autopara-metric Pendulum Vibration Absorber for a Duffing System. Shock and Vibration. 2008;15( 3–4): 355–368. https://doi.org/10.1155/2008/82712910.1155/2008/827129 Search in Google Scholar

5. Yıldırım V. Exact Determination of the Global Tip Deflection of both Close-Coiled and Open-Coiled Cylindrical Helical Compression Springs having Arbitrary Doubly-Symmetric Cross-Sections. International Journal of Mechanical Sciences. 2016;115–116: 280–298. https://doi.org/10.1016/j.ijmecsci.2016.06.02210.1016/j.ijmecsci.2016.06.022 Search in Google Scholar

6. Paredes M. Enhanced Formulae for Determining Both Free Length and Rate of Cylindrical Compression Springs. Journal of Mechanical Design. 2016;138(2): 021404.https://doi.org/10.1115/1.403209410.1115/1.4032094 Search in Google Scholar

7. Liu H., Kim D. Effects of end Coils on the Natural Frequency of Automotive Engine Valve Springs. International Journal of Automotive Technology. 2009;10(4): 413–420. https://doi.org/10.1007/s12239-009-0047-810.1007/s12239-009-0047-8 Search in Google Scholar

8. Haringx J. A. On Highly Compressible Helical Springs and Rubber Rods, and their Application for Vibration-Free Mountings. Philips research reports. 1949;4: 49–80. Search in Google Scholar

9. Wittrick W. H. On Elastic Wave Propagation in Helical Springs. International Journal of Mechanical Sciences. 1966;8(1): 25–47. https://doi.org/10.1016/0020-7403(66)90061-010.1016/0020-7403(66)90061-0 Search in Google Scholar

10. Jiang W., Jones W. K., Wang T. L., Wu K. H. Free Vibration of Helical Springs. Journal of Applied Mechanics.1991;58(1): 222–228.https://doi.org/10.1115/1.289715410.1115/1.2897154 Search in Google Scholar

11. Kobelev V. Effect of Static Axial Compression on the Natural Frequencies of Helical Springs. Multidiscipline Modeling in Materials and Structures. 2014;10: 379–398. https://doi.org/10.1108/MMMS-12-2013-007810.1108/MMMS-12-2013-0078 Search in Google Scholar

12. Mottershead J. E. Finite Elements for Dynamical Analysis of Helical Rods. International Journal of Mechanical Sciences. 1980;22(5): 267–283. https://doi.org/10.1016/0020-7403(80)90028-410.1016/0020-7403(80)90028-4 Search in Google Scholar

13. Taktak M., Dammak F., Abid S., Haddar M. A Finite Element for Dynamic Analysis of a Cylindrical Isotropic Helical Spring. Journal of Me-chanics of Materials and Structures. 2008;3(4): 641–658. http://doi.org/10.2140/jomms.2008.3.64110.2140/jomms.2008.3.641 Search in Google Scholar

14. Michalczyk K. Analysis of Lateral Vibrations of the Axially Loaded Helical Spring. Journal of Theoretical and Applied Mechanics. 2015;53(3): 745-755. https://doi.org/10.15632/jtam-pl.53.3.74510.15632/jtam-pl.53.3.745 Search in Google Scholar

15. Michalczyk K., Bera P. A Simple Formula for Predicting the First Natural Frequency of Transverse Vibrations of Axially Loaded Helical Springs. Journal of Theoretical and Applied Mechanics. 2019;57(3): 779–790. https://doi.org/10.15632/jtam-pl/11024310.15632/jtam-pl/110243 Search in Google Scholar

16. Berger C., Kaiser B. Results of Very High Cycle Fatigue Tests on Helical Compression Springs. International Journal of Fatigue. 2006;28(11): 1658–1663. https://doi.org/10.1016/j.ijfatigue.2006.02.04610.1016/j.ijfatigue.2006.02.046 Search in Google Scholar

17. Zhou C. et al. An Investigation of Abnormal Vibration – Induced Coil Spring Failure in Metro Vehicles. Engineering Failure Analysis. 2020;108: 104238. https://doi.org/10.1016/j.engfailanal.2019.10423810.1016/j.engfailanal.2019.104238 Search in Google Scholar

18. Sobaś M. Analysis of the Suspension of Freight Wagons Bogies Type Y25. Pojazdy Szynowe. 2014;3: 33–44.10.53502/RAIL-138984 Search in Google Scholar

19. Swacha P., Kotyk M., Ziółkowski W., Stachowiak R. Stand for testing the fatigue life of compression springs. Developments in Mechanical Engineering. 2021;17(9): 73–85. https://doi.org/10.37660/dme.2021.17.9.6 Search in Google Scholar

20. Czaban J., Szpica D. The didactic stand to test of spring elements in vehicle suspension. Acta Mechanica et Automatica. 2009;3(1): 33–35. Search in Google Scholar

21. Gross S. Berechnung und Gestaltung von Metallfedern, Springer-Verlag Berlin Heidelberg GmbH. 1951.10.1007/978-3-662-01358-8 Search in Google Scholar

22. Wahl A. M. Mechanical Springs. Penton Publishing Company. 1944. Search in Google Scholar