Open Access

Experimental and Numerical Small Punch Tests of the 14Cr ODS Ferritic Steel


Cite

1. Corwin WR, Rosinski ST, van Walle E. Small Specimen Test Techniques. Philadelphia (PE): Society for Testing and Materials; 1998.10.1520/STP1329-EB Search in Google Scholar

2. Chen H, Hyde TH. Use of multi-step loading small punch test to investigate the ductile-to-brittle transition behaviour of a thermally sprayed CoNiCrAlY coating. Mater Sci Eng A. 2017;680:203-209.10.1016/j.msea.2016.10.097 Search in Google Scholar

3. Contreras M, Rodríguez C, Belzunce FJ, Betegón C. Use of the small punch test to determine the ductile-to-brittle transition temperature of structural steels. Fatigue Fract Eng Mater Struct. 2008;31(9):727-737.10.1111/j.1460-2695.2008.01259.x Search in Google Scholar

4. Jaya BN, Alam Z. Small-scale mechanical testing of materials. Curr Sci. 2013;105(8);1073-1099. Search in Google Scholar

5. Bruchhausen M, Holmström S, Simonovski I, Austin T, Lapetite J-M, Ripplinger S, de Haan F. Recent developments in small punch testing: Tensile properties and DBTT. Theor Appl Fract Mech. 2016;86(A):2-10.10.1016/j.tafmec.2016.09.012 Search in Google Scholar

6. Oksiuta Z, Lewandowska M, Kurzydłowski KJ. Mechanical properties and thermal stability of nanostructured ODS RAF steels. Mech Mater. 2013;67:15-24.10.1016/j.mechmat.2013.07.006 Search in Google Scholar

7. Okuda N, Kasada R, Kimura A. Statistical evaluation of anisotropic fracture behavior of ODS ferritic steels by using small punch tests, J Nucl Mater. 2009;386-388:974-978.10.1016/j.jnucmat.2008.12.265 Search in Google Scholar

8. Shimomura Y, Spears W. Review of the ITER Project, IEEE Trans Appl Supercond. 2004;14(2):1369-1735.10.1109/TASC.2004.830580 Search in Google Scholar

9. Motojima O. The ITER project construction status. Nucl Fusion. 2015;55(10):104023.10.1088/0029-5515/55/10/104023 Search in Google Scholar

10. Zinkle SJ. Challenges in Developing Materials for Fusion Technology - Past, Present and Future. Fusion Sci Technol. 2017;64(2):65-7510.13182/FST13-631 Search in Google Scholar

11. Zhao Q, Ma Z, Yu L, Li H, Liu C, Li C, Liu Y. Tailoring the secondary phases and mechanical properties of ODS steel by heat treatment. J Mater Sci Technol. 2019;35(6):1064-1073.10.1016/j.jmst.2018.12.008 Search in Google Scholar

12. Zhang L, Yu L, Liu Y, Liu C, Li H, Wu J. Influence of Zr addition on the microstructures and mechanical properties of 14Cr ODS steels. Mater Sci Eng A. 2017;695:66–73.10.1016/j.msea.2017.04.020 Search in Google Scholar

13. Li W, Hao T, Gao R, Wang X, Zhang T, Fang Q, Liu C. The effect of Zr, Ti addition on the particle size and microstructure evolution of yttria nanoparticle in ODS steel. Powder Technol. 2017;319:172–182.10.1016/j.powtec.2017.06.041 Search in Google Scholar

14. Oksiuta Z, Mueller P, Spätig P, Baluc N. Effect of thermo-mechanical treatments on the microstructure and mechanical properties of an ODS ferritic steel. J Nucl Mater. 2011;412(2): 221-226.10.1016/j.jnucmat.2011.03.006 Search in Google Scholar

15. Oksiuta Z, Ozieblo A, Perkowski K, Osuchowski M, Lewandowska M. Influence of HIP pressure on tensile properties of a 14Cr ODS ferritic steel. Fusion Eng Des. 2014;89(2):137-141.10.1016/j.fusengdes.2014.01.052 Search in Google Scholar

16. Li Y, Shen J, Li F, Yang H, Kano S, Matsukawa Y, Muroga T. Effects of fabrication processing on the microstructure and mechanical properties of oxide dispersion strengthening steels. Mater Sci Eng A. 2016;654:203-212.10.1016/j.msea.2015.12.032 Search in Google Scholar

17. Zhao Q, Yu L, Liu Y, Huang Y, Ma Z, Li H, Wu J. Microstructure and tensile properties of a 14Cr ODS ferritic steel. Mater Sci Eng A. 2017;680:347-350.10.1016/j.msea.2016.10.118 Search in Google Scholar

18. De Sanctis M, Fava A, Lovicu G, Montanari R, Richetta M, Testani C, Varone A. Mechanical Characterization of a Nano-ODS Steel Prepared by Low-Energy Mechanical Alloying. Metals. 2017;7(8): 283.10.3390/met7080283 Search in Google Scholar

19. Murty K, Charit I. An Introduction to Nuclear Materials: Fundamentals and Applications. Weinheim (DE): Wiley-VCH; 2013. Search in Google Scholar

20. Karthik V, Kasiviswanathan KV, Raj B. Miniaturized Testing of Engineering Materials. Boca Raton (FL): CRC Press; 2017.10.1201/9781315372051 Search in Google Scholar

21. Simonovski I, Holmström S, Bruchhausen M. (2017), Small punch tensile testing of curved specimens. Int J Mech Sci. 2017;120: 204-213.10.1016/j.ijmecsci.2016.11.029 Search in Google Scholar

22. Manahan M, Argon A, Harling O. The development of a miniaturised disk bend test for the determination of postirradiation mechanical properties. J Nucl Mater. 1981;104:1545-1550.10.1016/0022-3115(82)90820-0 Search in Google Scholar

23. Altstadt E, Ge HE, Kuksenko V, Serrano M, Houska M, Lasan M, Bruchhausen M, Lapetite J-M, Dai Y. Critical evaluation of the small punch test as a screening procedure for mechanical properties. J Nucl Mater. 2016;472:186-195.10.1016/j.jnucmat.2015.07.029 Search in Google Scholar

24. Lucon E, Benzing J, Hrabe N. Development and Validation of Small Punch Testing at NIST. Gaithersburg (MD): National Institute of Standards and Technology; 2020. doi: 10.6028/NIST.IR.8303 Open DOISearch in Google Scholar

25. Yang SS, Ling X, Qian Y, Ma RB. Yield Strength Analysis by Small Punch Test Using Inverse Finite Element Method. Procedia Eng. 2015;130:1039-1045.10.1016/j.proeng.2015.12.259 Search in Google Scholar

26. Moreno MF, Bertolino G, Yawny A. The significance of specimen displacement definition on the mechanical properties derived from Small Punch Test. Mater Des. 2016;95, 623–631.10.1016/j.matdes.2016.01.148 Search in Google Scholar

27. Sánchez-Ávila D, Orozco-Caballero A, Martínez E, Portolés L, Barea R, Carreño F. High-accuracy compliance correction for nonlinear mechanical testing: Improving Small Punch Test characterization. Nucl Mater Energy. 2021;26:100914.10.1016/j.nme.2021.100914 Search in Google Scholar

28. Campitelli EN, Spätig P, Bonadé R, Hoffelner W, Victoria M. Assessment of the constitutive properties from small ball punch test: experiment and modelling. J Nucl Mater. 2004;335(3):366–378.10.1016/j.jnucmat.2004.07.052 Search in Google Scholar

29. Kalidindi SR, Abusafieh A, El-Danaf E. Accurate characterization of machine compliance for simple compression testing. Exp Mech. 1997;37(2);210–215.10.1007/BF02317861 Search in Google Scholar

30. García TE, Rodríguez C, Belzunce FJ, Suárez C. Estimation of the mechanical properties of metallic materials by means of the small punch test. J Alloys Compd. 2014;582:708–717.10.1016/j.jallcom.2013.08.009 Search in Google Scholar

31. Mao X, Takahashi H. Development of a further-miniaturized specimen of 3 mm diameter for tem disk (ø 3 mm) small punch tests. J Nucl Mater. 1987;150(1):42–52.10.1016/0022-3115(87)90092-4 Search in Google Scholar

32. Prakash RV, Arunkumar S. Influence of Friction on the Response of Small Punch Test. Trans Indian Inst Met. 2016;69(2):617-622.10.1007/s12666-015-0769-4 Search in Google Scholar

33. Haroush S, Priel E, Moreno D, Busiba A, Silverman I, Turgeman A, Gelbstein Y. Evaluation of the mechanical properties of SS-316L thin foils by small punch testing and finite element analysis. Mater Des. 2015;83:75-84.10.1016/j.matdes.2015.05.049 Search in Google Scholar