Open Access

Evaluation of Different Binder Combinations of Cement, Slag and CKD for S/S Treatment of TBT Contaminated Sediments


Cite

1. Abdel-Gawwad H. A., Heikal M., Mohammed M. S., El-Aleem S. A., Hassan H. S., García S. V., Alomayri T. (2019), Sustainable disposal of cement kiln dust in the production of cementitious materials. Journal of Cleaner Production, 232 1218–1229. https://doi.org/10.1016/j.jclepro.2019.06.01610.1016/j.jclepro.2019.06.016 Search in Google Scholar

2. Abraham M., Westphal L., Hand I., Lerz A., Jeschek J., Bunke D., Leipe T., Schulz-Bull D. (2017), TBT and its metabolites in sediments: Survey at a German coastal site and the central Baltic Sea. Marine Pollution Bulletin, 121, 1–2, 404-410. https://doi.org/10.1016/j.marpolbul.2017.06.02010.1016/j.marpolbul.2017.06.02028629811 Search in Google Scholar

3. Adeyanju E., Okeke C. A., Akinwumi I., Busari A. (2020), Sub-grade Stabilization using Rice Husk Ash-based Geopolymer (GRHA) and Cement Kiln Dust (CKD). Case Studies in Construction Materials, 13, e00388. https://doi.org/10.1016/j.cscm.2020.e0038810.1016/j.cscm.2020.e00388 Search in Google Scholar

4. Ahmad S., Hakeem I., Maslehuddin M. (2014), Development of UHPC mixtures utilizing natural and industrial waste materials as partial replacements of silica fume and sand. The Scientific World Journal, 713531. https://doi.org/10.1155/2014/71353110.1155/2014/713531414648125197709 Search in Google Scholar

5. Ai H., Clavier K. A., Watts B. E., Gale S. A., Townsend T. G. (2019), The efficacy of pH-dependent leaching tests to provide a reasonable estimate of post-carbonation leaching, Journal of Hazardous Materials, 373, 204-211. https://doi.org/10.1016/j.jhazmat.2019.03.08910.1016/j.jhazmat.2019.03.08930921571 Search in Google Scholar

6. Akcil, A., Erust, C., Ozdemiroglu, S., Fonti, V., Beolchini, F. (2015), A review of approaches and techniques used in aquatic contaminated sediments: metal removal and stabilization by chemical and biotechnological processes. Journal of Cleaner Production, 86, 24-36. https://doi.org/10.1016/j.jclepro.2014.08.00910.1016/j.jclepro.2014.08.009 Search in Google Scholar

7. Al-Homidy A. A., Dahim M. H., Abd El Aal A. K. (2017), Improvement of geotechnical properties of sabkha soil utilizing cement kiln dust. Journal of Rock Mechanics and Geotechnical Engineering, 9, 749–760. https://doi.org/10.1016/j.jrmge.2016.11.01210.1016/j.jrmge.2016.11.012 Search in Google Scholar

8. Alshemmari H., Al-Awadi M., Karam Q., Talebi L. (2020), Sedimentary butyltin compounds and sediment transport model at the Shuwaikh Port, Kuwait Bay. Arabian Journal of Geosciences, 13, 677. https://doi.org/10.1007/s12517-020-05683-210.1007/s12517-020-05683-2 Search in Google Scholar

9. Alzieu C. (2000), Impact of Tributyltin on Marine Invertebrates. Ecotoxicology, 9, 71–76 https://doi.org/10.1023/A:100896822940910.1023/A:1008968229409 Search in Google Scholar

10. Antizar-Ladislao B. (2008), Environmental levels, toxicity and human exposure to tributyltin (TBT)-contaminated marine environment. A review. Environment International, 34, 2, 292-308. https://doi.org/10.1016/j.envint.2007.09.00510.1016/j.envint.2007.09.00517959247 Search in Google Scholar

11. Bagheri S. M., Koushkbaghi M., Mohseni E., Koushkbaghi S., Tah-mouresi B. (2020), Evaluation of environment and economy viable recycling cement kiln dust for use in green concrete. Journal of Building Engineering, 32, 101809. https://doi.org/10.1016/j.jobe.2020.10180910.1016/j.jobe.2020.101809 Search in Google Scholar

12. Baghriche M., Achour S., Baghriche O. (2020), Combined effect of cement kiln dust and calcined dolomite raw on the properties of performance magnesium phosphate cement. Case Studies in Construction Materials, 13, e00386. https://doi.org/10.1016/j.cscm.2020.e0038610.1016/j.cscm.2020.e00386 Search in Google Scholar

13. Baltic Marine Environment Protection Commission (2015), HELCOM Guidelines for Management of Dredged Material at Sea and HELCOM Reporting Format for Management of Dredged Material at Sea [Online access: 18.08.2021]. URL: https://helcom.fi/media/publications/HELCOM-Guidelines-for-Management-of-Dredged-Material-at-Sea.pdf Search in Google Scholar

14. Bandara K. R. V., Chinthaka S. D. M., Yasawardene S. G., Manage P. M. (2021), Modified, optimized method of determination of Tributyltin (TBT) contamination in coastal water, sediment and biota in Sri Lanka. Marine Pollution Bulletin, 166, 112202. https://doi.org/10.1016/j.marpolbul.2021.11220210.1016/j.marpolbul.2021.112202 Search in Google Scholar

15. Bandyopadhyay S. S. (1981). Soil Stabilization with Preheater Fines. Journal of the Geotechnical Engineering Division, 107(5), 654-658. https://doi.org/10.1061/AJGEB6.001070610.1061/AJGEB6.0010706 Search in Google Scholar

16. Barnat-Hunek D., Góra J., Suchorab Z., Łagód G. (2018), 5 – cement kiln dust. In: Waste and Supplementary Cementitious Materials in Concrete. (eds.: Siddique, R., Cachim, P.) Woodhead Publishing. Wood-head Publishing Series in Civil and Structural Engineering. 149–180. https://doi.org/10.1016/B978-0-08-102156-9.00005-510.1016/B978-0-08-102156-9.00005-5 Search in Google Scholar

17. Berto D., Giani M., Boscolo R., Covelli S., Giovanardi O., Massironi M., Grassia L. (2007), Organotins (TBT and DBT) in water, sediments, and gastropods of the southern Venice lagoon (Italy). Marine Pollution Bulletin, 55(10-12), 425-35. https://doi.org/10.1016/j.marpolbul.2007.09.00510.1016/j.marpolbul.2007.09.005 Search in Google Scholar

18. Blanck H., Dahl B. (1998), Recovery of marine periphyton communities around a Swedish marina after the ban of TBT use in antifouling paint. Marine Pollution Bulletin, 36, 6, 437-442. https://doi.org/10.1016/S0025-326X(97)00209-910.1016/S0025-326X(97)00209-9 Search in Google Scholar

19. Cato I. (1977), Recent sedimentological and geochemical conditions and pollution problems in two marine areas in south-western Sweden. Striae 6, Societas Upsaliensis Pro Geologia Quaternaria, Uppsala. Ed.: Lars-König Königsson. ISBN: 91-7388-005-1, 158. Search in Google Scholar

20. Chaunsali P., Peethamparan S. (2011), Evolution of strength, microstructure and mineralogical composition of a CKD–GGBFS binder. Cement and Concrete Research, 41, 197–208. https://doi.org/10.1016/j.cemconres.2010.11.01010.1016/j.cemconres.2010.11.010 Search in Google Scholar

21. Dahlin T., Svensson M., Lindh P. (1999), DC Resistivity and SASW for Validation of Efficiency in Soil Stabilisation Prior to Road Construction. In: Proceedings EEGS’99, Budapest, Hungary, 6-9 September 1999, Ls5, 1–3. https://doi.org/10.3997/2214-4609.20140646610.3997/2214-4609.201406466 Search in Google Scholar

22. De Gisi S., Todaro F., Mesto E., Schingaro E., Notarnicola M. (2020), Recycling contaminated marine sediments as filling materials by pilot scale stabilization/solidification with lime, organoclay and activated carbon. Journal of Cleaner Production, 269, 122416. https://doi.org/10.1016/j.jclepro.2020.12241610.1016/j.jclepro.2020.122416 Search in Google Scholar

23. Eklund B., Watermann B. (2018), Persistence of TBT and copper in excess on leisure boat hulls around the Baltic Sea. Environmental Science and Pollution Research, 25, 14595–14605. https://doi.org/10.1007/s11356-018-1614-110.1007/s11356-018-1614-1 Search in Google Scholar

24. Evans S.M. (1999), Tributyltin Pollution: the Catastrophe that Never Happened. Marine Pollution Bulletin, 38, 8, 629-636. https://doi.org/10.1016/S0025-326X(99)00040-510.1016/S0025-326X(99)00040-5 Search in Google Scholar

25. Fabian K., Schifano V., De Jong J. (2010), Design and Pilot Tests of Binder Stabilization of Oily Refinery and Dredged Marine Sediments. In: GeoFlorida 2010. February 20-24, 2010, Orlando, Florida, United States, 2472–2481. https://doi.org/10.1061/41095(365)25110.1061/41095(365)251 Search in Google Scholar

26. Faisal A. A., Ahmed D. N., Rezakazemi M., Sivarajasekar N., Sharma G. (2021), Cost-effective composite prepared from sewage sludge waste and cement kiln dust as permeable reactive barrier to remediate simulated groundwater polluted with tetracycline. Journal of Environmental Chemical Engineering, 9, 105194. https://doi.org/10.1016/j.jece.2021.10519410.1016/j.jece.2021.105194 Search in Google Scholar

27. Fan C., Wang B., Qi Y., Liu Z. (2021), Characteristics and leaching behavior of MSWI fly ash in novel solidification/stabilization binders. Waste Management, 131, 277-285. https://doi.org/10.1016/j.wasman.2021.06.01110.1016/j.wasman.2021.06.01134198181 Search in Google Scholar

28. Fiertak M., Stryszewska T. (2013), Resistance of three-component cement binders in highly chemically corrosive environments. Procedia Engineering, 57, 278–286. https://doi.org/10.1016/j.proeng.2013.04.03810.1016/j.proeng.2013.04.038 Search in Google Scholar

29. Furdek Turk M., Ivanić M., Dautović J., Bačić N., Mikac N. (2020), Simultaneous analysis of butyltins and total tin in sediments as a tool for the assessment of tributyltin behaviour, long-term persistence and historical contamination in the coastal environment, Chemosphere, 258, 127307. https://doi.org/10.1016/j.chemosphere.2020.12730710.1016/j.chemosphere.2020.12730732554007 Search in Google Scholar

30. Ghavami S., Naseri H., Jahanbakhsh H., Moghadas Nejad F. (2021), The impacts of nano-SiO2 and silica fume on cement kiln dust treated soil as a sustainable cement-free stabilizer. Construction and Building Materials, 285 122918. https://doi.org/10.1016/j.conbuildmat.2021.12291810.1016/j.conbuildmat.2021.122918 Search in Google Scholar

31. Ghavami S., Rajabi M. (2021), Investigating the Influence of the Combination of Cement Kiln Dust and Fly Ash on Compaction and Strength Characteristics of High-Plasticity Clays. Journal of Civil Engineering and Materials Application, 5(1), 9-16. https://doi.org/10.22034/jcema.2020.250727.1040 Search in Google Scholar

32. Guerriero V., Mazzoli S., Iannace A., Vitale S., Carravetta A., Strauss C. (2013), A permeability model for naturally fractured carbonate reservoirs. Marine and Petroleum Geology, 40, 115–134. https://doi.org/10.1016/j.marpetgeo.2012.11.00210.1016/j.marpetgeo.2012.11.002 Search in Google Scholar

33. Hasaballah A. F., Hegazy T., Ibrahim M., El-Emam D. A., (2021), Cement kiln dust as an alternative technique for wastewater treatment. Ain Shams Engineering Journal, In Press Corrected Proof. https://doi.org/10.1016/j.asej.2021.04.02610.1016/j.asej.2021.04.026 Search in Google Scholar

34. Herbich, J. B. (1990), Extent of Contaminated Marine Sediments and Cleanup Methodology. 22nd International Conference on Coastal Engineering. July 2-6, 1990, Delft, The Netherlands, pp. 2894-2907. https://doi.org/10.1061/9780872627765.22110.1061/9780872627765.221 Search in Google Scholar

35. Hiller E., Jurkovič L., Faragó T., Vítková M., Tóth R., Komárek M. (2021), Contaminated soils of different natural pH and industrial origin: The role of (nano) iron- and manganese-based amendments in As, Sb, Pb, and Zn leachability, Environmental Pollution, 285, 117268. https://doi.org/10.1016/j.envpol.2021.11726810.1016/j.envpol.2021.117268 Search in Google Scholar

36. Houlihan, M., Bilgen, G., Dayioglu, A. Y., Aydilek, A. H. (2021), Geoenvironmental Evaluation of RCA-Stabilized Dredged Marine Sediments as Embankment Material. Journal of Materials in Civil Engineering, 33(1), 04020435. https://doi.org/10.1061/(ASCE)MT.1943-5533.000354710.1061/(ASCE)MT.1943-5533.0003547 Search in Google Scholar

37. Källén H., Heyden A., Åström K., Lindh P. (2016), Measuring and evaluating bitumen coverage of stones using two different digital image analysis methods. Measurement, 84, 56–67. https://doi.org/10.1016/j.measurement.2016.02.00710.1016/j.measurement.2016.02.007 Search in Google Scholar

38. Källén H., Heyden A., Lindh P. (2014), Estimation of grain size in asphalt samples using digital image analysis. In: Proceedings of SPIE – The International Society for Optical Engineering, article number 921714, 921714–921714. https://doi.org/10.1117/12.206173010.1117/12.2061730 Search in Google Scholar

39. Kim N. S., Shim W. J., Yim U. H., Ha S. Y., An J. G., Shin K. H. (2011), Three decades of TBT contamination in sediments around a large scale shipyard. Journal of Hazardous Materials, 192, 2, 634-642. https://doi.org/10.1016/j.jhazmat.2011.05.06510.1016/j.jhazmat.2011.05.065 Search in Google Scholar

40. Kuterasińska-Warwas J., Król A. (2017), Leaching of heavy metals from cementitious composites made of new ternary cements. In: E3S Web Conference. International Conference Energy, Environment and Material Systems (EEMS 2017), 19, 02019, 1-8. Search in Google Scholar

41. Lemenkov V., Lemenkova P. (2021a), Measuring Equivalent Cohesion Ceq of the Frozen Soils by Compression Strength Using Kriolab Equipment. Civil and Environmental Engineering Reports, 31, 63–84. https://doi.org/10.2478/ceer-2021-002010.2478/ceer-2021-0020 Search in Google Scholar

42. Lemenkov V., Lemenkova P. (2021b), Using TeX Markup Language for 3D and 2D Geological Plotting. Foundations of Computing and Decision Sciences, 46 43–69. https://doi.org/10.2478/fcds-2021-000410.2478/fcds-2021-0004 Search in Google Scholar

43. Li Y., Bai W., Shi T. (2017), A study of the bonding performance of magnesium phosphate cement on mortar and concrete. Construction and Building Materials, 142, 459–468. https://doi.org/10.1016/j.conbuildmat.2017.03.09010.1016/j.conbuildmat.2017.03.090 Search in Google Scholar

44. Li, J.-S., Zhou, Y.-F., Wang, Q.-M., Xue, Q. (2019). Development of a Novel Binder Using Lime and Incinerated Sewage Sludge Ash to Stabilize and Solidify Contaminated Marine Sediments with High Water Content as a Fill Material. Journal of Materials in Civil Engineering, 31(10). https://doi.org/10.1061/(ASCE)MT.1943-5533.000291310.1061/(ASCE)MT.1943-5533.0002913 Search in Google Scholar

45. Li, J.-S., Zhou, Y.-F., Wang, Q.-M., Xue, Q., Poon, C. S. (2019), Development of a Novel Binder Using Lime and Incinerated Sewage Sludge Ash to Stabilize and Solidify Contaminated Marine Sediments with High Water Content as a Fill Material. Journal of Materials in Civil Engineering, 31(10), 04019245. https://doi.org/10.1061/(ASCE)MT.1943-5533.000291310.1061/(ASCE)MT.1943-5533.0002913 Search in Google Scholar

46. Lindh P. (2001), Optimizing binder blends for shallow stabilisation of fine-grained soils. Ground Improvement, 5, 23–34.10.1680/grim.2001.5.1.23 Search in Google Scholar

47. Lindh P. (2003), Mcv and shear strength of compacted fine-grained tills. in: Proceedings 12th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering. 4–8 August 2003, Singapore, 493–496. Search in Google Scholar

48. Lindh P. (2004), Compaction- and strength properties of stabilised and unstabilised fine-grained tills. PhD Thesis. Lund University, Lund. https://doi.org/10.13140/RG.2.1.1313.6481 Search in Google Scholar

49. Lindh P., Dahlin T., Svensson M. (2000), Comparisons between different test methods for soil stabilisation, in: Proceedings of the ISRM International Symposium 2000, IS 2000; Melbourne; Australia. 19-24 November 2000. 1–5. Search in Google Scholar

50. Lu H., Wei F., Tang J., Giesy J. P. (2016), Leaching of metals from cement under simulated environmental conditions, Journal of Environmental Management, 169, 319-327. https://doi.org/10.1016/j.jenvman.2015.12.00810.1016/j.jenvman.2015.12.008 Search in Google Scholar

51. Majdi H. S., Shubbar A. A., Nasr M. S., Al-Khafaji Z. S., Jafer H., Abdulredha M., Masoodi Z. A., Sadique M., Hashim K. (2020), Experimental data on compressive strength and ultrasonic pulse velocity properties of sustainable mortar made with high content of GGBFS and CKD combinations. Data in Brief, 31 105961. https://doi.org/10.1016/j.dib.2020.10596110.1016/j.dib.2020.105961 Search in Google Scholar

52. Mansour, B. (2021), Valorization of Metal Milling Waste in Cement Based Mortars Modified by Replacement of Cement Kiln Dust. The Journal of Solid Waste Technology and Management, 47(1), 19-30. https://doi.org/10.5276/JSWTM/2021.1910.5276/JSWTM/2021.19 Search in Google Scholar

53. Mizerna K., Król A. (2018), Leaching of heavy metals from monolithic waste. Environment Protection Engineering, 44(4), 143-158. https://doi.org/10.5277/epe180410 Search in Google Scholar

54. Moh Z. C. (1962), Soil Stabilization with Cement and Sodium Additives. Journal of the Soil Mechanics and Foundations Division, 88(6), 81-105. https://doi.org/10.1061/JSFEAQ.000047810.1061/JSFEAQ.0000478 Search in Google Scholar

55. Najim K. B., Mahmod Z. S., Atea A. K. M. (2014), Experimental investigation on using cement kiln dust (ckd) as a cement replacement material in producing modified cement mortar. Construction and Building Materials, 55, 5–12. https://doi.org/10.1016/j.conbuildmat.2014.01.01510.1016/j.conbuildmat.2014.01.015 Search in Google Scholar

56. Norén, A., Karlfeldt Fedje, K., Strömvall, A.-M., Rauch, S., Andersson-Sköld, Y. (2021), Low impact leaching agents as remediation media for organotin and metal contaminated sediments. Journal of Environmental Management, 282, 111906. https://doi.org/10.1016/j.jenvman.2020.11190610.1016/j.jenvman.2020.111906 Search in Google Scholar

57. Nosjean N., Khamitov Y., Rodriguez S., Yahia-Cherif R. (2020), Fracture corridor identification through 3D multifocusing to improve well deliverability, an Algerian tight reservoir case study. Solid Earth Sciences, 5 31–49. https://doi.org/10.1016/j.sesci.2019.11.00910.1016/j.sesci.2019.11.009 Search in Google Scholar

58. Nyembwe, K.J., Fosso-Kankeu, El., Waanders, F., Mkandawire, M. (2021), pH-dependent leaching mechanism of carbonatitic chalcopyrite in ferric sulfate solution, Transactions of Nonferrous Metals Society of China, 31(7), 2139-2152. https://doi.org/10.1016/S1003-6326(21)65644-310.1016/S1003-6326(21)65644-3 Search in Google Scholar

59. Pazikowska-Sapota G., Dembska G., Galer-Tatarowicz K., Zegarowski Ł., Littwin M., Holm G., Kreft-Burman K. (2016), The tests on stabilization of the contaminated sediments for sustainable management in the Baltic Sea region. Bulletin of the Maritime Institute in Gdańsk, 31(1), 11-24. Search in Google Scholar

60. Peethamparan S., Olek J., Lovell J. (2008), Influence of chemical and physical characteristics of cement kiln dusts (CKDs) on their hydration behavior and potential suitability for soil stabilization. Cement and Concrete Research, 38 803–815. https://doi.org/10.1016/j.cemconres.2008.01.01110.1016/j.cemconres.2008.01.011 Search in Google Scholar

61. Rađenović, D., Kerkez, Đ., Tomašević Pilipović, D., Dubovina, M., Grba, N., Krčmar, D., Dalmacija, B. (2019), Long-term application of stabilization/solidification technique on highly contaminated sediments with environment risk assessment. Science of The Total Environment, 684, 186-195. https://doi.org/10.1016/j.scitotenv.2019.05.35110.1016/j.scitotenv.2019.05.351 Search in Google Scholar

62. Ribeiro D. V., Morelli M. R. (2009), Influence of the addition of grinding dust to a magnesium phosphate cement matrix. Construction and Building Materials, 23, 3094–3102. https://doi.org/10.1016/j.conbuildmat.2009.03.01310.1016/j.conbuildmat.2009.03.013 Search in Google Scholar

63. Richardson J. F., Harker J. H., Backhurst J. R. (2002), Chapter 10 – leaching, in: Richardson, J.F., Harker, J.H., Backhurst, J.R. (Eds.), Chemical Engineering (Fifth Edition). fifth edition ed. Butterworth-Heinemann, Oxford. Chemical Engineering Series, 502–541. https://doi.org/10.1016/B978-0-08-049064-9.50021-710.1016/B978-0-08-049064-9.50021-7 Search in Google Scholar

64. Rimal S., Poudel R. K., Gautam, D. (2019), Experimental study on properties of natural soils treated with cement kiln dust. Case Studies in Construction Materials, 10, e00223. https://doi.org/10.1016/j.cscm.2019.e0022310.1016/j.cscm.2019.e00223 Search in Google Scholar

65. Sánchez-García, L., Cato, I., Gustafsson, Ö. (2010), Evaluation of the influence of black carbon on the distribution of PAHs in sediments from along the entire Swedish continental shelf, Marine Chemistry, 119, 1–4, 44-51. https://doi.org/10.1016/j.marchem.2009.12.00510.1016/j.marchem.2009.12.005 Search in Google Scholar

66. Sariosseiri F., Muhunthan B. (2008), Geotechnical properties of Palouse loess modified with cement kiln dust and Portland cement. In: Proceedings of geocongress 2008, Geochallenge of sustainability in the Geoenvironment, New Orleans, LA.10.1061/40972(311)12 Search in Google Scholar

67. Schifano, V. and Fabian, K. (2010). A Laboratory Study of Binder Stabilization of Oily Refinery and Dredged Marine Sediments. In: GeoFlorida 2010, February 20-24, 2010, Orlando, Florida, U.S., 2482–2491. https://doi.org/10.1061/41095(365)25210.1061/41095(365)252 Search in Google Scholar

68. Shah M., Sircar A., Shah V., Dholakia Y. (2021), Geochemical and Geothermometry study on hot-water springs for understanding prospectivity of low enthalpy reservoirs of Dholera Geothermal field, Gujarat, India. Solid Earth Sciences, In Press Corrected Proof. https://doi.org/10.1016/j.sesci.2021.04.00410.1016/j.sesci.2021.04.004 Search in Google Scholar

69. Sheikh, M. A., Fasih, M. M., Strand, J., Ali, H. R., Bakar, A. H., Sharif, H. M. (2020), Potential of silicone passive sampler for Tributyltin (TBT) detection in tropical aquatic systems, Regional Studies in Marine Science, 35, 101171. https://doi.org/10.1016/j.rsma.2020.10117110.1016/j.rsma.2020.101171 Search in Google Scholar

70. Shen W., Shao J., Burlion N., Liu Z. (2020), A microstructure-based constitutive model for cement paste with chemical leaching effect. Mechanics of Materials, 150, 103571. https://doi.org/10.1016/j.mechmat.2020.10357110.1016/j.mechmat.2020.103571 Search in Google Scholar

71. Shen W., Wu M., Zhang B., Xu G., Cai J., Xiong X., Zhao D.: (2021), Coarse aggregate effectiveness in concrete: Quantitative models study on paste thickness, mortar thickness and compressive strength. Construction and Building Materials, 289, 123171. https://doi.org/10.1016/j.conbuildmat.2021.12317110.1016/j.conbuildmat.2021.123171 Search in Google Scholar

72. Shoaei, P., Zolfaghary, S., Jafari, N., Dehestani, M., & Hejazi, M. (2017), Investigation of adding cement kiln dust (CKD) in ordinary and lightweight concrete. Advances in Concrete Construction, 5(2), 101-115. https://doi.org/10.12989/acc.2017.5.2.10110.12989/acc.2017.5.2.101 Search in Google Scholar

73. Shoaib M., Balaha M., Abdel-Rahman A. (2000), Influence of cement kiln dust substitution on the mechanical properties of concrete. Cement and Concrete Research, 30 371–377. https://doi.org/10.1016/S0008-8846(99)00262-810.1016/S0008-8846(99)00262-8 Search in Google Scholar

74. Shubbar A. A., Jafer H., Abdulredha M., Al-Khafaji Z. S., Nasr M. S., Al Masoodi Z., Sadique M. (2020), Properties of cement mortar incorpo- rated high volume fraction of GGBFS and CKD from 1 day to 550 days. Journal of Building Engineering, 30 101327. https://doi.org/10.1016/j.jobe.2020.10132710.1016/j.jobe.2020.101327 Search in Google Scholar

75. Silva R., de Brito J., Dhir R. (2015), Tensile strength behaviour of recycled aggregate concrete. Construction and Building Materials, 83 108–118. https://doi.org/10.1016/j.conbuildmat.2015.03.03410.1016/j.conbuildmat.2015.03.034 Search in Google Scholar

76. Sun, W., Yi, Y. (2021), Acid washing of incineration bottom ash of municipal solid waste: Effects of pH on removal and leaching of heavy metals. Waste Management, 120, 183-192. https://doi.org/10.1016/j.wasman.2020.11.03010.1016/j.wasman.2020.11.03033310130 Search in Google Scholar

77. Sundqvist, K.L., Tysklind, M., Cato, I., Bignert, A., Wiberg, K. (2009), Levels and homologue profiles of PCDD/Fs in sediments along the Swedish coast of the Baltic Sea. Environmental Science and Pollution Research, 16, 396–409. https://doi.org/10.1007/s11356-009-0110-z10.1007/s11356-009-0110-z19296141 Search in Google Scholar

78. Suzuki, T., Nakase, K., Tamenishi, T., Niinae, M. (2020), Influence of pH and Cations Contained in Rainwater on Leaching of Cd(II) from Artificially Contaminated Montmorillonite, Journal of Environmental Chemical Engineering, 8(5), 104080. https://doi.org/10.1016/j.jece.2020.10408010.1016/j.jece.2020.104080 Search in Google Scholar

79. Sveriges geologiska undersökning (2021), Kartvisare Miljöövervakning, havs- och sjösediment (accessed 2021-08-18). https://apps.sgu.se/kartvisare/kartvisare-miljoovervakning-sediment.html Search in Google Scholar

80. Swedish Institute for Standards (2005), Water quality – Determination of selected organotin compounds – Gas chromatographic method (ISO 17353:2004). https://www.sis.se/api/document/preview/40636 Search in Google Scholar

81. Swedish Institute for Standards (2014a), Geotechnical investigation and testing – Laboratory testing of soil – Part 1: Determination of water content (ISO 17892-1:2014). https://www.sis.se/api/document/preview/104733/ Search in Google Scholar

82. Swedish Institute for Standards (2014b), Geotechnical investigation and testing - Laboratory testing of soil – Part 2: Determination of bulk density (ISO 17892-2:2014) https://www.sis.se/en/produkter/environment-health-protection-safety/soil-quality-pedology/physical-properties-of-soils/sseniso1789222014/ Search in Google Scholar

83. Swedish Institute for Standards (2017a), Geotechnical investigation and testing – Laboratory testing of soil – Part 7: Unconfined compression test (ISO 17892-7:2017). https://www.sis.se/en/produkter/environment-health-protection-safety/soil-quality-pedology/physical-properties-of-soils/ss-en-iso-17892-72018 Search in Google Scholar

84. Swedish Institute for Standards (2017b), Standard for Geotechnical investigation and testing – Identification, description and classification of rock, ISO 14689:2017. https://www.sis.se/en/produkter/civil-engineering/earthworks-excavations-foundation-construction-underground-works/ss-en-iso-146892018/ Search in Google Scholar

85. Swedish Institute for Standards (2019), Markundersökningar - Lakningsprocedurer för efterföljande kemisk och ekotoxikologisk provning av jord och jordmaterial - del 4: Påverkan av pH på lakning med initial syra/bas tillsats (ISO 21268-4:2019). https://www.sis.se/produkter/miljo-och-halsoskyddsakerhet/jordkvalitet-pedologi/provtagning-och-undersokning-avjord/ss-en-iso-21268-42019/ Search in Google Scholar

86. Swedish Institute for Standards (2021a), Soil quality – Guidance on leaching procedures for subsequent chemical and ecotoxicological testing of soils and soil materials (ISO 18772:2008) https://www.sis.se/en/produkter/environment-health-protection-safety/soil-quality-pedology/examination-of-soils/sseniso187722014 Search in Google Scholar

87. Swedish Institute for Standards (2021b). Standard Test Method for Particle-Size Distribution (Gradation) of Fine-Grained Soils Using the Sedimentation (Hydrometer) Analysis. https://www.sis.se/produkter/externa-kategorier/construction-astmvol-04/soil-and-rock-ii-d5877--latest-astm-vol-0409/astm-d7928-21e1/ Search in Google Scholar

88. Szarek-Gwiazda, E. (2014), Potential effect of pH on the leaching of heavy metals from sediments of the Carpathian dam reservoirs. Geology, Geophysics and Environment, 40(4), 349-358. http://dx.doi.org/10.7494/geol.2014.40.4.34910.7494/geol.2014.40.4.349 Search in Google Scholar

89. Taha B., Nounu G. (2009), Utilizing waste recycled glass as sand/cement replacement in concrete. Journal of materials in civil engineering, 21, 709–721. https://doi.org/10.1061/(ASCE)0899-1561(2009)21:12(709)10.1061/(ASCE)0899-1561(2009)21:12(709) Search in Google Scholar

90. Tang, P.-P., Zhang, W.-L., Chen, Y.-H., Chen, G., Xu, J. (2020), Stabilization/solidification and recycling of sediment from Taihu Lake in China: Engineering behavior and environmental impact. Waste Management, 116, 1-8. https://doi.org/10.1016/j.wasman.2020.07.04010.1016/j.wasman.2020.07.040 Search in Google Scholar

91. Turner J. P., (1994). Soil Stabilization Using Oil-Shale Solid Waste. Journal of Geotechnical Engineering, 120(4), 646–660. https://doi.org/10.1061/(ASCE)0733-9410(1994)120:4(646)10.1061/(ASCE)0733-9410(1994)120:4(646) Search in Google Scholar

92. Viani A., Gualtieri A. F. (2014), Preparation of magnesium phosphate cement by recycling the product of thermal transformation of asbestos containing wastes. Cement and Concrete Research, 58, 56–66. https://doi.org/10.1016/j.cemconres.2013.11.01610.1016/j.cemconres.2013.11.016 Search in Google Scholar

93. Wang L., Chen L., Provis J. L., Tsang D. C., Poon C. S. (2020), Accelerated carbonation of reactive MgO and Portland cement blends under flowing CO2 gas. Cement and Concrete Composites, 106 103489. https://doi.org/10.1016/j.cemconcomp.2019.10348910.1016/j.cemconcomp.2019.103489 Search in Google Scholar

94. Wang, D. X., Abriak, N. E., Zentar, R., Xu, W. Y., 2011. Geotechnical Properties of Cement-Based Dredged Marine Sediments As a New Pavement Material. In: GeoHunan International Conference 2011. June 9-11, 2011, Hunan, China, 85-92. https://doi.org/10.1061/47629(408)1110.1061/47629(408)11 Search in Google Scholar

95. Wareham, D. G., Mackechnie, J. R. (2006), Solidification of New Zealand Harbor Sediments Using Cementitious Materials. Journal of Materials in Civil Engineering, 18(2), 311-315. https://doi.org/10.1061/(ASCE)0899-1561(2006)18:2(311)10.1061/(ASCE)0899-1561(2006)18:2(311) Search in Google Scholar

96. Wojtkiewicz, M., Stasiek, K., Galer – Tatarowicz, K., Pazikowska – Sapota, G., Dembska, G. (2015), Validation of analytical method for determination of tributyltin (TBT) in soils and bottom sediments. Bulletin of the Maritime Institute in Gdańsk, 30(1), 189-194. https://doi.org/10.5604/12307424.1185609 Search in Google Scholar

97. Yaseri S., Masoomi Verki V., Mahdikhani M. (2019), Utilization of high volume cement kiln dust and rice husk ash in the production of sustainable geopolymer. Journal of Cleaner Production, 230, 592–602. https://doi.org/10.1016/j.jclepro.2019.05.05610.1016/j.jclepro.2019.05.056 Search in Google Scholar

98. Yoon, I.-H., Moon, D. H., Kim, K.-W., Lee, K.-Y., Lee, J.-H., & Kim, M. G. (2010), Mechanism for the stabilization/solidification of arsenic-contaminated soils with Portland cement and cement kiln dust. Journal of Environmental Management, 91(11), 2322-2328. https://doi.org/10.1016/j.jenvman.2010.06.01810.1016/j.jenvman.2010.06.01820643499 Search in Google Scholar

99. Zahran E. (2020), 3D-modeling and lithostratigraphic correlation of the subsurface upper cretaceous Duwi phosphates at Wadi Ash-Shaghab, East Sibaiya area, southern Egypt. Solid Earth Sciences, 5 94–102. https://doi.org/10.1016/j.sesci.2020.04.00110.1016/j.sesci.2020.04.001 Search in Google Scholar

100. Zhang W., Zhao L., Yuan Z., Li D., Morrison L. (2021), Assessment of the long-term leaching characteristics of cement-slag stabilized/solidified contaminated sediment. Chemosphere, 267, 128926. https://doi.org/10.1016/j.chemosphere.2020.12892610.1016/j.chemosphere.2020.12892633243571 Search in Google Scholar

101. Zhang, W.L., McCabe, B.A., Chen, Y.H., Forkan, T.J. (2018), Unsaturated behaviour of a stabilized marine sediment: A comparison of cement and GGBS binders, Engineering Geology, 246, 57-68. https://doi.org/10.1016/j.enggeo.2018.09.02010.1016/j.enggeo.2018.09.020 Search in Google Scholar

102. Zhang, W.-l., Zhao, L.-y., McCabe, B. A., Chen, Y.-h., Morrison, L. (2020), Dredged marine sediments stabilized/solidified with cement and GGBS: Factors affecting mechanical behaviour and leachability. Science of The Total Environment, 733, 138551. https://doi.org/10.1016/j.scitotenv.2020.13855110.1016/j.scitotenv.2020.13855132422459 Search in Google Scholar