Cite

1. Araya R., Marivil M., Mir C., Moroni O., Sepúlveda A. (2008), Temperature and grain size effects on the behavior of CuAlBe SMA wires under cyclic loading, Materials Science and Engineering: A, 496(1-2), 209–213.10.1016/j.msea.2008.05.030Search in Google Scholar

2. ASTM F2516-14 (2014), Standard Test Method for Tension Testing of Nickel-Titanium Superelastic Materials.Search in Google Scholar

3. Auricchio F., Marfia S., Sacco E. (2003) Modelling of SMA materials: training and two way memory effect, Comput. Struct. 81, 2301–2317.10.1016/S0045-7949(03)00319-5Search in Google Scholar

4. Bubulinca C., Balandraud X., Grédiac M., Stanciu S., Abrudeanu M. (2014), Characterization of the mechanical dissipation in shape-memory alloys during stress-induced phase transformation, Journal of Materials Science, 49, 701–709.10.1007/s10853-013-7751-5Search in Google Scholar

5. Carpinteri A., Di Cocco, Fortese G., Iacoviello F., Natali S., Ronchei C., Scorza D., Vantadori S., Zanichelli A. (2018), mechanical behaviour and phase transition mechanisms of a shape memory alloy by means of a novel analytical model, Acta Mechanica et Automatica, Vol. 12, No. 2, 105–108.Search in Google Scholar

6. Duerig T., Stoeckel J., Johnson D. (2002) SMA — smart materials for medical applications, Proceedings of SPIE 4763, Bellingham, WA, 7–15.10.1117/12.508666Search in Google Scholar

7. Hua P., Chu K., Ren F., Sun Q. (2020), Cyclic phase transformation behavior of nanocrystalline NiTi at microscale, Acta Materialia, 185, 507–517.10.1016/j.actamat.2019.12.019Search in Google Scholar

8. Iasnii V., Junga R. (2018), Phase Transformations and Mechanical Properties of the Nitinol Alloy with Shape Memory, Materials Science, 54(3), 406–411.10.1007/s11003-018-0199-7Search in Google Scholar

9. Iasnii V., Yasniy P. (2019a), Degradation of functional properties of pseudoelastic NiTi alloy under cyclic loading: an experimental study, Acta mechanica et automatica, 13(2), 95–100.10.2478/ama-2019-0013Search in Google Scholar

10. Iasnii V., Yasniy P., Lapusta Y., Shnitsar T. (2018), Experimental study of pseudoelastic NiTi alloy under cyclic loading, Scientific Journal of TNTU, 92(4), 7–12.10.33108/visnyk_tntu2018.04.007Search in Google Scholar

11. Iasnii, V., Yasniy P. (2019b), Influence of stress ratio on functional fatigue of pseudoelastic NiTi alloy, Procedia Structural Integrity, 16, 67–72.10.1016/j.prostr.2019.07.023Search in Google Scholar

12. Kang G. (2013), Advances in transformation ratcheting and ratcheting-fatigue interaction of NiTi shape memory alloy, Acta Mechanica Solida Sinica, 26(3), 221–236.10.1016/S0894-9166(13)60021-XSearch in Google Scholar

13. Kecik K. (2015), Application of shape memory alloy in harvesto-absorber system, Acta mechanica et automatica, 9(3), 155–160.10.1515/ama-2015-0026Search in Google Scholar

14. Mahtabi M.J., Shamsaei N., Rutherford B. (2015), Mean strain effects on the fatigue behavior of superelastic Nitinol alloys: An experimental investigation, Procedia Engineering, 133, 646–654.10.1016/j.proeng.2015.12.645Search in Google Scholar

15. Mahtabi M.J., Stone T.W., Shamsaei N. (2018), Load sequence effects and variable amplitude fatigue of superelastic NiTi, International Journal of Mechanical Sciences, 148, 307–315.10.1016/j.ijmecsci.2018.08.037Search in Google Scholar

16. Maletta C., Sgambitterra E., Furgiuele F., Casati R., Tuissi R. (2014), Fatigue properties of a pseudoelastic NiTi alloy: Strain ratcheting and hysteresis under cyclic tensile loading, International Journal of Fatigue, 66, 78–85.10.1016/j.ijfatigue.2014.03.011Search in Google Scholar

17. Nematollahi M., Baghbaderani K.S., Amerinatanzi A., Zamanian H., Elahinia M. (2019), Application of NiTi in Assistive and Rehabilitation Devices: A Review, Bioengineering, 6(2), 37.10.3390/bioengineering6020037663052431035696Search in Google Scholar

18. Pecora R., Dimino I. (2015), SMA for Aeronautics, Shape Memory Alloy Engineering, Chapter 10, 275–304.10.1016/B978-0-08-099920-3.00010-3Search in Google Scholar

19. Pelton, A.R., Schroeder V., Mitchell M.R., Gong Xiao-Yan, Barney M., Robertson S.W. (2008), Fatigue and durability of Nitinol stents, Journal of the Mechanical Behavior of Biomedical Materials, 1 (2), 153–164.10.1016/j.jmbbm.2007.08.00119627780Search in Google Scholar

20. Scirè Mammano G., Dragoni E. (2012), Functional fatigue of NiTi shape memory wires for a range of end loadings and constraints, Frattura ed Integrità Strutturale, 7(23), 25–33.10.3221/IGF-ESIS.23.03Search in Google Scholar

21. Soul H., Yawny A. (2015), Self-centering and damping capabilities of a tension-compression device equipped with superelastic NiTi wires, Smart Materials and Structures, 24(7), 075005.10.1088/0964-1726/24/7/075005Search in Google Scholar

22. Soul H., Yawny A. (2017), Effect of Variable Amplitude Blocks’ Ordering on the Functional Fatigue of Superelastic NiTi Wires, Shap. Mem. Superelasticity, 3, 431–442.10.1007/s40830-017-0126-zSearch in Google Scholar

23. Wagner M.F., Nayan N., Ramamurty U. (2008), Healing of fatigue damage in NiTi shape memory alloys, Journal of Physics D: Applied Physics, 41(18), 185408.10.1088/0022-3727/41/18/185408Search in Google Scholar

24. Yasniy P., Hlado V., Hutsaylyuk V., Vuherer T. (2005), Microcrack initiation and growth in heat-resistant 15Kh2MFA steel under cyclic deformation, Fatigue & Fracture of Engineering Materials & Structures, 28(4), 391–397.10.1111/j.1460-2695.2005.00870.xSearch in Google Scholar

25. Zeng Z., Oliveira J.P., Ao S. Et al. (2020), Fabrication and characterization of a novel bionic manipulator using a laser processed NiTi shape memory alloy, Optics & Laser Technology, 122.10.1016/j.optlastec.2019.105876Search in Google Scholar