Cite

1. Ahangar-Asr H., Teshnehlab M., Mansouri M., Pazoki A. R. (2011), A Hybrid Strategy for the Control of Rotary Inverted Pendulum, International Conference on Electrical and Control Engineering (ICECE), 16–18 September, Yichang, China, 5656–5659.10.1109/ICECENG.2011.6057971Search in Google Scholar

2. Astrom K. J., Furuta K. (2000), Swing up a pendulum by energy control, Automatica, Vol. 36, No. 2, 287–295.10.1016/S0005-1098(99)00140-5Search in Google Scholar

3. Avago Technologies (2006), AEDS-962x for 150 LPI Ultra Small Optical Encoder Modules, May.Search in Google Scholar

4. Beater P. (2007), Pneumatic Drives, System Design, Modelling and Control, Springer.10.1007/978-3-540-69471-7Search in Google Scholar

5. Boubaker O. (2012), The Inverted Pendulum: A Fundamental Benchmark in Control Theory and Robotics, IEEE International Conference on Education and e-Learning Innovations, Jul.10.1109/ICEELI.2012.6360606Search in Google Scholar

6. Boubaker O. (2013), The Inverted Pendulum Benchmark in Nonlinear Control Theory: A Survey, International Journal of Advanced Robotic Systems, Vol. 10, 233:2013.10.5772/55058Search in Google Scholar

7. Bryson A. E., Ho Y. C. (1969), Applied Optimal Control, Blaisdell.Search in Google Scholar

8. Hovingh A., Roon M. (2007), Design and Control of an Inverted Pendulum, Western Michigan University, Department of Aeronautical and Mechanical Engineering.Search in Google Scholar

9. Hui L., Min Z., Chen G. (2016), Cloud-Model PID Control of Double Inverted Pendulum Based on Information Fusion, 35th Chinese Control Conference, Jul. 27–29.Search in Google Scholar

10. MathWorks (2017), Matlab Control System Toolbox User’s Guide.Search in Google Scholar

11. Moore M. L., Musacchio J. T., Passino K. M. (2001), Genetic adaptive control for an inverted wedge: experiments and comparative analyses, Engineering Applications of Artifcial Intelligence, Vol. 14, 1–14.10.1016/S0952-1976(00)00047-6Search in Google Scholar

12. Ozbek N. S., Efe M. O. (2010), ”Swing up and Stabilization Control Experiments for a Rotary Inverted Pendulum - An Educational Comparison”, International Conference on Systems Man and Cybernetics (SMC), 10-13 October, Istanbul, Turkey, 2226–2231.10.1109/ICSMC.2010.5641962Search in Google Scholar

13. Prasad L. B., Tyagi B., Gupta H. O. (2014), Optimal Control of Nonlinear Inverted Pendulum System Using PID Controller and LQR: Performance Analysis Without and With Disturbance Input, International Journal of Automation and Computing 11(6), Dec., 661–670.10.1007/s11633-014-0818-1Search in Google Scholar

14. Sang Y., Fan Y., Liu B. (2011), Double Inverted Pendulum Control Based on Three-loop PID and Improved BP Neural Network, Second International Conference on Digital Manufacturing and Automation (ICDMA), 5-7 August, Zhangjiajie, Hunan, China, 456–459.10.1109/ICDMA.2011.118Search in Google Scholar

15. Uszynski S., Ambroziak L., Kondratiuk M., Kulesza Z. (2018), Air Consumption Analysis in Compressed Air Powered Vehicles, 23rd International Conference on Methods and Models in Automation & Robotics, MMAR 2018 8486124, 837–842.10.1109/MMAR.2018.8486124Search in Google Scholar

16. Wang H., Chamroo A., Vasseur C., Koncar V. (2008), Stabilization of a 2-DOF Inverted Pendulum by a Low Cost Visual Feedback, American Control Conference, Seattle, 11–13 Jun.10.1109/ACC.2008.4587094Search in Google Scholar

17. White W. N., Fales R. C. (1999), Control of a Double Inverted Pendulum with Hydraulic Actuation: A Case Study. American Control Conference, San Diego, Jun.Search in Google Scholar

18. Zhangn X. L., Dai J. H., Cheng Y. T., Hao S., Li J. H. (2017), Nonlinear control of triple inverted pendulum based on T-S cloud inference network, Control And Decision Conference (CCDC), 28-30 May, Chongqing, China, 3290–3295.10.1109/CCDC.2017.7979074Search in Google Scholar

19. Zhijun L., Chenguang Y., Liping F. (2013), Advanced Control of Wheeled Inverted Pendulum Systems, Springer.Search in Google Scholar