Open Access

Practical Aspects of Design and Testing Unmanned Aerial Vehicles


Cite

1. Aghaeeyan A,, Abdollahi F., Talebi H.A., (2015), UAV–UGVs cooperation: With a moving center based trajectory, Robotics and Autonomous Systems, 63, Part 1,1-9.10.1016/j.robot.2014.10.005Search in Google Scholar

2. Bonali F.L., Tibaldi A., Marchese F., Fallati L., Russo E., Corselli C., Savini A., (2019), UAV-based surveying in volcano-tectonics: An example from the Iceland rift, Journal of Structural Geology, 121, 46-64.10.1016/j.jsg.2019.02.004Search in Google Scholar

3. Cai G., Feng L., Chen B., Lee T.H., (2008), Systematic design methodology and construction of UAV helicopters, Mechatronics 18, 545–558.10.1016/j.mechatronics.2008.05.011Search in Google Scholar

4. Cechowicz R., (2017), Bias drift estimation for mems gyroscope used in inertial navigation, Acta Mechanica et Automatica, 11(2), 104-110.10.1515/ama-2017-0016Search in Google Scholar

5. Cetinsoy E., Dikyar S., Hancer C., Oner K.T., Sirimoglu E., Unel M., Aksit M.F., (2012), Design and construction of a novel quad tilt-wing UAV, Mechatronics 22, 723–745.10.1016/j.mechatronics.2012.03.003Search in Google Scholar

6. Cho A., Kang Y.S., Park B., Yoo Ch.S., Koo S.O., (2011), Altitude Integration of Radar Altimeter and GPS/INS for Automatic Takeoff and Landing of a UAV, 2011 11th International Conference on Control, Automation and Systems, Gyeonggi-do, Korea, 1429-1432.Search in Google Scholar

7. Choudhary G., Sharma V., You I., (2019), Sustainable and secure trajectories for the military Internet of Drones (IoD) through an efficient Medium Access Control (MAC) protocol, Computers & Electrical Engineering, 74, 59-73.10.1016/j.compeleceng.2019.01.007Search in Google Scholar

8. Deng H., Arif U., Fu Q., Xi Z., Quan Q., Cai K., (2018), Visual–inertial estimation of velocity for multicopters based on vision motion constraint, Robotics and Autonomous Systems, 107, 262-279.10.1016/j.robot.2018.06.010Search in Google Scholar

9. Ebeid E., Skriver M., Husum K., Jensen K., Pagh U., (2018), A Survey of Open-Source UAV Flight Controllers and Flight Simulators, Microprocessors and Microsystems, 61, 11-20.10.1016/j.micpro.2018.05.002Search in Google Scholar

10. Ferrarese G., (2017), Bandwidth Assessment for MultiRotor UAVs,Acta Mechanica et Automatica, 11(2), 150-153.10.1515/ama-2017-0023Search in Google Scholar

11. Fujimori A., Ukigai Y., Santoki A., Oh-hara S., (2018), Autonomous flight control system of quadrotor and its application to formation control with mobile robot. IFAC-PapersOnLine, 51(22), 343-347.Search in Google Scholar

12. Gómez A., Rodríguez A., Sanchez C., Luis G., Hernández C., Cuerno R., (2019), Remotely Piloted Aircraft Systems conceptual design methodology based on factor analysis, Aerospace Science and Technology, 90, 368-387.10.1016/j.ast.2019.04.041Search in Google Scholar

13. https://www.youtube.com/watch?v=4rh5Z1fHzq4&feature=youtu.be (access on 23.12.2019).Search in Google Scholar

14. https://www.youtube.com/watch?v=4WOrWoNT-bM&feature=youtu.be (access on 23.12.2019).Search in Google Scholar

15. https://www.youtube.com/watch?v=eJ9QhFdsagQ&feature=youtu.be (access on 23.12.2019).Search in Google Scholar

16. https://www.youtube.com/watch?v=tq4ihl6fRDg&feature=youtu.be (access on 23.12.2019).Search in Google Scholar

17. Huang L., Song J., Zhang Ch., Cai G., (2018), Design and performance analysis of landmark-based INS/Vision Navigation System for UAV, Optik, 172, 484-493.10.1016/j.ijleo.2018.07.050Search in Google Scholar

18. Khamseh H.B., Janabi-Sharifi F., Abdessameud A., (2018), Aerial manipulation—A literature survey, Robotics and Autonomous Systems, 107, 221-235.10.1016/j.robot.2018.06.012Search in Google Scholar

19. Kopichev M., Ignatiev K., Putov A., (2013), Autonomous Control and Stabilization System for Unmanned Aerial Vehicles, IFAC Proceedings Volumes, 46(30), 240-243.Search in Google Scholar

20. Kownacki C., (2016), Multi-UAV Flight on the Basis of Virtual Structure Combined with Behavioral Approach, Acta Mechanica et Auto-matica, 10(2), 92-99.10.1515/ama-2016-0015Search in Google Scholar

21. Luo Q., Yang X., Zhou Y., (2019). Nature-inspired approach: An enhanced moth swarm algorithm for global optimization, Mathematics and Computers in Simulation, 159, 57-92.10.1016/j.matcom.2018.10.011Search in Google Scholar

22. María de Miguel Molina, Virginia Santamarina Campos, M. Ángeles Carabal Montagud, Blanca de Miguel Molina, (2018), Ethics for civil indoor drones: A qualitative analysis, International Journal of Micro Air Vehicles, 10(4), 340–351.Search in Google Scholar

23. Nallapaneni Manoj Kumara, Sudhakar K., Samykano M., Jayaseelan V., (2018), On the technologies empowering drones for intelligent monitoring of solar photovoltaic power plants, International Conference on Robotics and Smart Manufacturing (RoSMa2018), Procedia Computer Science, 133, 585–593.10.1016/j.procs.2018.07.087Search in Google Scholar

24. Olivas F., Valdez F., Castillo O., González C.I., Martinez G.E., Melin P., (2017), Ant colony optimization with dynamic parameter adaptation based on interval type-2 fuzzy logic systems, Appl. Soft Comput, 74-87.10.1016/j.asoc.2016.12.015Search in Google Scholar

25. Puchała K., Szymczyk E., Jachimowicz J., (2015), FEM design of composite – metal joint for bearing failure analysis, Przegląd Mechaniczny, 33 – 41.Search in Google Scholar

26. Pulvera A., Weib R., (2018), Optimizing the spatial location of medical drones, Applied Geography, 90, 9–16.10.1016/j.apgeog.2017.11.009Search in Google Scholar

27. Roseneia Rodrigues Santos de Melo, Dayana B.C., Juliana Sampaio Álvares, Irizarry J., (2017), Applicability of unmanned aerial system (UAS) for safety inspection on construction sites, Safety Science, 98, 174-185.10.1016/j.ssci.2017.06.008Search in Google Scholar

28. Socha K., Dorigo M., (2008), Ant colony optimization for continuous domains, European Journal of Operational Research, 1155-1173.10.1016/j.ejor.2006.06.046Search in Google Scholar

29. Souza D., Pinto V., Nascimento L., Torres J., Gomes J., Sa-Junior J., Sa-Junior J., Almeida R., (2016), Battery Discharge forecast applied in Unmanned Aerial Vehicle, Przegląd Elektrotechniczny 02/2016, 185-192.Search in Google Scholar

30. Stančić R. Graovac S., (2010), The integration of strap-down INS and GPS based on adaptive error damping, Robotics and Autonomous Systems, 58(10), 1117-1129.10.1016/j.robot.2010.06.004Search in Google Scholar

31. Sun J., Li B., Wen Ch.Y., Chen Ch.K., (2018), Design and implementation of a real-time hardware-in-the-loop testing platform for a dual-rotor tail-sitter unmanned aerial vehicle, Mechatronics 56, 1–15.10.1016/j.mechatronics.2018.10.001Search in Google Scholar

32. Szywalski P., (2017), Design of the autonomous flight algorithm for Unmanned Aerial System, Opole, 4-61Search in Google Scholar

33. Szywalski P., Waindok A., (2018), Analysis of the quadrocopter class 130 frame deformation made with using 3D printing technology, Przegląd Mechaniczny, 39-44.Search in Google Scholar

34. Szywalski P., Wajnert D., (2018), Possibility Analysis of the Location Measurement by Using the GPS Receiver and Barometric Altimeter, Pomiary Automatyka Robotyka, 33-39.10.14313/PAR_229/33Search in Google Scholar

35. Zhu W., Dong Y., Wang G., Qiao Z., Gao Z., (2013), High-precision Barometric Altitude Measurement Method and Technology, 2013 IEEE International Conference on Information and Automation (ICIA), 430-435.10.1109/ICInfA.2013.6720337Search in Google Scholar