1. bookVolume 13 (2019): Issue 3 (September 2019)
Journal Details
Format
Journal
eISSN
2300-5319
First Published
22 Jan 2014
Publication timeframe
4 times per year
Languages
English
access type Open Access

Near-Surface Mass Defect in Models of Locally Heterogeneous Solid Mechanics

Published Online: 05 Nov 2019
Volume & Issue: Volume 13 (2019) - Issue 3 (September 2019)
Page range: 205 - 210
Received: 01 Jul 2019
Accepted: 24 Oct 2019
Journal Details
Format
Journal
eISSN
2300-5319
First Published
22 Jan 2014
Publication timeframe
4 times per year
Languages
English
Abstract

This article deals with the model of the locally heterogeneous elastic body. The model accounts for long-range interaction and describes near-surface non-homogeneity and related size effects. The key systems of model equations are presented. From the viewpoint of the representative volume element, the boundary condition for density and the limits of applicability of the model are discussed. The difference of mass density in the near-surface body region from the reference value (near-surface mass defect) causes a non-zero stressed state. It is indicated on the strong dependence of the surface value of density from the curvature of the surface of thin fibres. The effect of the near-surface mass defect on the stressed state and the size effect of surface stresses have been investigated on an example of a hollow cylinder. Size effect of its strength has been studied as well.

Keywords

1. Aifantis E. C. (2011), On the gradient approach-relation to Eringen’s nonlocal theory, International Journal of Engineering Science, 49(12), 1367–1377.10.1016/j.ijengsci.2011.03.016Search in Google Scholar

2. Bargmann S., Klusemann B., Markmann J., Schnabel J. E., Schneider K., Soyarslan C., Wilmers J. (2018), Generation of 3D representative volume elements for heterogeneous materials: A review, Progress in Materials Science, 96, 322-384.10.1016/j.pmatsci.2018.02.003Search in Google Scholar

3. Bažant Z. P., Jirásek M. (2002), Nonlocal integral formulations of plasticity and damage: Survey of progress, Journal of Engineering Mechanics, 128(11),1119–1149.10.1061/(ASCE)0733-9399(2002)128:11(1119)Search in Google Scholar

4. Bostanabad R., Zhang Y., Li X., Kearney T., Brinson L., Apley D., Liu W., Chen W. (2018), Computational microstructure characterization and reconstruction: Review of the state-of-the-art techniques, Progress in Materials Science, 95, 1-41.10.1016/j.pmatsci.2018.01.005Search in Google Scholar

5. Burak Y., Nahirnyj T., Tchervinka K. (2014), Local gradient thermomechanics, Encyclopedia of Thermal Stresses, 2794–2801.10.1007/978-94-007-2739-7_833Search in Google Scholar

6. Cheng A. H-D. (2016), Poroelasticity, Vol. 27, Springer.10.1007/978-3-319-25202-5Search in Google Scholar

7. Di Paola M., Failla, G., Zingales M. (2010), The mechanically-based approach to 3D non-local linear elasticity theory: Long-range central interactions, International Journal of Solids and Structures, 47(18-19), 2347-2358.10.1016/j.ijsolstr.2010.02.022Search in Google Scholar

8. Dormieux L., Kondo D. (2013), Non linear homogenization approach of strength of nanoporous materials with interface effects, International Journal of Engineering Science, 71, 102–110.10.1016/j.ijengsci.2013.04.006Search in Google Scholar

9. Dormieux L., Kondo D., Ulm F.-J. (2006), Microporomechanics, John Wiley and Sons.10.1002/0470032006Search in Google Scholar

10. Drugan W.J., Willis J.R. (1996), A micromechanics-based nonlocal constitutive equation and estimates of representative volume element size for elastic composites, Journal of the Mechanics and Physics of Solids, 44(4), 497–524.10.1016/0022-5096(96)00007-5Search in Google Scholar

11. Eringen A. C. (2002), Nonlocal continuum field theories. Springer.Search in Google Scholar

12. Guo N., Zhao J. (2016), 3D multiscale modeling of strain localization in granular media, Computers and Geotechnics, 80, 360-372.10.1016/j.compgeo.2016.01.020Search in Google Scholar

13. Kanit T., Forest S., Galliet I., Mounoury V., Jeulin, D. (2003), Determination of the size of the representative volume element for random composites: statistical and numerical approach, International Journal of Solids and Structures, 40(13-14), 3647–3679.10.1016/S0020-7683(03)00143-4Search in Google Scholar

14. Karlicic D., Murmu T., Adhikari S., McCarthy M. (2015), Non-local structural mechanics. John Wiley and Sons.10.1002/9781118572030Search in Google Scholar

15. Khodabakhshi P., Reddy J. N. (2015), A unified integro-differential nonlocal model, International Journal of Engineering Science, 95, 60-75.10.1016/j.ijengsci.2015.06.006Search in Google Scholar

16. Kwok K., Boccaccini D., Persson Å. H., Frandsen H. L. (2016). Homogenization of steady-state creep of porous metals using three-dimensional microstructural reconstructions, International Journal of Solids and Structures, 78, 38-46.10.1016/j.ijsolstr.2015.09.020Search in Google Scholar

17. Marotti de Sciarra F. (2009), On non-local and non-homogeneous elastic continua, International Journal of Solids and Structures, 46(3), 651–676.10.1016/j.ijsolstr.2008.09.018Search in Google Scholar

18. Matouš K., Geers M. G., Kouznetsova V. G., Gillman A. (2017), A review of predictive nonlinear theories for multiscale modeling of heterogeneous materials, Journal of Computational Physics, 330, 192-220.10.1016/j.jcp.2016.10.070Search in Google Scholar

19. Monetto I., Drugan W. J. (2009), A micromechanics-based nonlocal constitutive equation and minimum RVE size estimates for random elastic composites containing aligned spheroidal heterogeneities, Journal of the Mechanics and Physics of Solids, 57(9), 1578-1595.10.1016/j.jmps.2009.05.005Search in Google Scholar

20. Nahirnyj T., Tchervinka K. (2015), Mathematical Modeling of Structural and Near-Surface Non-Homogeneities in Thermoelastic Thin Films, International Journal of Engineering Science, 91, 49–62.10.1016/j.ijengsci.2015.02.001Search in Google Scholar

21. Nahirnyj T., Tchervinka K. (2018), Fundamentals of the mechanics of locally non-homogeneous deformable solids, Lviv: Rastr-7 (in ukr).Search in Google Scholar

22. Polizzotto C. (2003), Gradient elasticity and nonstandard boundary conditions, International Journal of Solids and Structures, 40(26), 7399–7423.10.1016/j.ijsolstr.2003.06.001Search in Google Scholar

23. Polizzotto C. (2012), A gradient elasticity theory for second-grade materials and higher order inertia, International Journal of Solids and Structures, 49 (15), 2121–2137.10.1016/j.ijsolstr.2012.04.019Search in Google Scholar

24. Rezakhani R., Zhou X.W., Cusatis G. (2017), Adaptive multiscale homogenization of the lattice discrete particle model for the analysis of damage and fracture in concrete, International Journal of Solids and Structures, 2017, 125, 50-67.10.1016/j.ijsolstr.2017.07.016Search in Google Scholar

25. Saeb S., Steinmann P., Javili A. (2016), Aspects of computational homogenization at finite deformations: a unifying review from Reuss’ to Voigt’s bound, Applied Mechanics Reviews, 68(5), 050801.10.1115/1.4034024Search in Google Scholar

26. Salmi M., Auslender F., Bornert M., Fogli M. (2012), Various estimates of Representative Volume Element sizes based on a statistical analysis of the apparent behavior of random linear composites, Comptes Rendus Mécanique, 340(4-5), 230-246.10.1016/j.crme.2012.02.007Search in Google Scholar

27. Silling S.A. (2000), Reformulation of Elasticity Theory for Discontinuities and Long-Range Forces. Journal of the Mechanics and Physics of Solids, 48, 175–209.10.1016/S0022-5096(99)00029-0Search in Google Scholar

28. Sneddon I.N., Berry D.S. (1958), The Classical Theory of Elasticity. In: Flügge S. (eds) Elasticity and Plasticity / Elastizität und Plastizität. Handbuch der Physik / Encyclopedia of Physics, 3/6, Springer, Berlin, Heidelberg.10.1007/978-3-642-45887-3_1Search in Google Scholar

29. Wang Q., Liew K. (2007), Application of nonlocal continuum mechanics to static analysis of micro- and nano-structures, Physics Letters A, 363(3), 236–242.10.1016/j.physleta.2006.10.093Search in Google Scholar

30. Wiśniewska A., Hernik S., Liber-Kneć A., Egner H. (2019), Effective properties of composite material based on total strain energy equivalence, Composites Part B: Engineering, 166, 213-220.10.1016/j.compositesb.2018.11.094Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo