Open Access

Dynamic Analysis of a Rod Vibro-Impact System with Intermediate Supports


Cite

1. Babitsky V. (2013), Theory of vibro-impact systems and applications, Springer Science & Business Media.Search in Google Scholar

2. Bednarski Ł., Michalczyk J. (2017), Modelling of the working process of vibratory conveyors applied in the metallurgical industry, Archives of Metallurgy and Materials, 62(2), 721–728.10.1515/amm-2017-0109Search in Google Scholar

3. Belovodskiy V.N., Bukin S.L., Sukhorukov M.Y., Babakina A.A. (2015), 2:1 superharmonic resonance in two-masses vibrating machine, Journal of Vibration Engineering & Technologies, 3(2), 123–135.Search in Google Scholar

4. Clough Ray W., Joseph Penzien. (1995), Dynamics of Structures, Berkeley: Computers & Structures.Search in Google Scholar

5. David V. Hutton. (2004), Fundamentals of finite element analysis, Editorial McGraw − Hill, USA.Search in Google Scholar

6. Despotović Ž.V., Lečić M., Jović M. R., Durić A. (2014), Vibration control of resonant vibratory feeders with electromagnetic excitation, FME Transactions, 42(4), 281–289.10.5937/fmet1404281dSearch in Google Scholar

7. Dyachenko P., Chychuzhko M., Al-Ammouri A. (2017). Development and application of computer model to study the modes of dynamic loading in mechanical oscillatory systems. Eastern-European Journal of Enterprise Technologies, 1(85), 42–49.10.15587/1729-4061.2017.92202Search in Google Scholar

8. Filimonikhin G., Yatsun V. (2017). Conditions of replacing a single-frequency vibro-exciter with a dual-frequency one in the form of passive auto-balancer. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 1, 61–68.Search in Google Scholar

9. Gursky V., Kuzio I. (2016), Strength and durability analysis of a flat spring at vibro-impact loadings, Eastern-European Journal of Enterprise Technologies, 5, 7(83), 4–10.10.15587/1729-4061.2016.79910Search in Google Scholar

10. Kogaev V.P. (1977), Raschetu na prochnost pry napriazhenyiakh, peremennukh vo vremeny [Calculation of strength under stresses variable in time], Mashinostroenie, Moscow, (in Russian).Search in Google Scholar

11. Luo G., Ma L., Lv X. (2009), Dynamic analysis and suppressing chaotic impacts of a two-degree-of-freedom oscillator with a clearance, Nonlinear Analysis: Real World Applications, 10(2), 756–778.10.1016/j.nonrwa.2007.11.002Search in Google Scholar

12. Luo G., Zhang Y., Xie J., Zhang J. (2007), Vibro-impact dynamics near a strong resonance point, Acta Mechanica Sinica, 23(3), 329–341.10.1007/s10409-007-0072-7Search in Google Scholar

13. Nadutyi V.P., Sukharyov V.V., Belyushyn D.V. (2013), Determination of stress condition of vibrating feeder for ore drawing from the block under impact loads, Metallurgical & Mining Industry, 5(1), 24–26.Search in Google Scholar

14. Pavel V. Krot. (2010), Dynamics and diagnostics of the rolling mills drivelines with non-smooth stiffness characteristics, Proceedings of the 3rd International Conference on Nonlinear Dynamics, Kharkov, Ukraine, 115–120.Search in Google Scholar

15. Pisarenko G.S., Yakovlev A.P., Matveev V.V. (1988), Spravochnyk po soprotyvlenyyu materyalov [Handbook on strength of materials, Naukova Dumka, Kiev, (in Russian).Search in Google Scholar

16. Shigley Joseph Edward. (2011), Shigley’s mechanical engineering design, Tata McGraw-Hill Education.Search in Google Scholar

17. Simon P., Reuss P, Gaul L. (2014), Identification of sub- and higher harmonic vibrations in vibro-impact systems, Nonlinear Dynamics, 2, 131–140.10.1007/978-3-319-04522-1_12Search in Google Scholar

18. Sokolov I.J., Babitsky V.I., Halliwell N.A. (2007), Autoresonant vibro-impact system with electromagnetic excitation, Journal of Sound and Vibration, 308, 375–391.10.1016/j.jsv.2007.04.010Search in Google Scholar

19. Vladislav Yevstignejev (2008), Application of the complete bifurcation groups method for analysis of strongly nonlinear oscillators and vbro-impact systems, Riga, Summary.Search in Google Scholar

20. Yoon J. Y., Kim B. (2015), Vibro-impact energy analysis of a geared system with piecewise-type nonlinearities using various parameter values, Energies, 8(8), 8924–8944.10.3390/en8088924Search in Google Scholar