Antimicrobial resistance (AMR) arises when micro-organisms develop strategies to evade antimicrobial agents, making them ineffective. AMR is a global threat to the public health system across the globe. According to a recent report from the WHO, drug-resistant diseases claim the lives of at least 700,000 individuals each year [1]. Due to the inappropriate dosage and use of current antimicrobials, many pathogens become multi-drug-resistant (MDR) [2]. It is generally assumed that resistance to antibiotics and other antimicrobials has developed due to selective pressures resulting from indiscriminate and inappropriate use. Increased antibiotic resistance has resulted in fewer treatment options for patients and increased morbidity and death. Due to this, we are now confronted with more acute diseases that require more intense treatment, relatively extended hospital stays and expensive hospitalization [3]. Bacteria can gain resistance through diverse mechanisms such as restricting drug uptake into the cell, altering a drug target, enzymatic degradation of a drug, and active efflux of a drug. The efflux mechanism involves the extrusion of drugs from the interior to the external environment by protein transporters called multidrug efflux pumps (EPs). An EP reduces the efficacy of antibiotics by preventing their intracellular accumulation. The efflux-mediated resistance is widespread in the bacteria [4]. Numerous studies have shown that EPs, such as AcrAB-TolC of Escherichia coli, MexAB-OprM of Pseudomonas aeruginosa, and AdeFGH of Acinetobacter baumanii help in biofilm formation, pathogenicity, stress tolerance, and quorum sensing (QS) [5,6,7,8]. The link between EPs and QS has been investigated in P. aeruginosa. Mutation in RND EP leads to the downregulation of QS-dependent LecA-Lux pathways, thereby increasing the expulsion of QS molecules and biofilm formation [9]. EPs can interact with host-derived antimicrobials such as bile salts, contributing to the virulence of enteric bacteria; the RND EP, AcrAB-TolC from E. coli is involved in the extrusion of bile salt, is a good example [10]. Other RND EPs, VexAB, VexCD, VexIJK, and VexGH, increase the pathogenicity of Vibrio cholerae by encoding the two major virulence factors: cholera toxin (CT) and toxin co-regulated pilus (TCP) [11]. This review will focus on the major classes of EPs identified in bacteria and discuss the newly identified EPIs.
Major classes of efflux pumps
The EPs are predominantly found in Gram-positive bacteria (GPB) such as Streptococcus pneumoniae, methicillin-resistant Staphylococcus aureus (MRSA), Listeria monocytogenes and Gram-negative bacteria (GNB) including E. coli, A. baumanii, Klebsiella pneumoniae, Camphylobacter jejuni, P. aeruginosa, Neisseria gonorrheae and V. cholerae. EPs are energy-dependent as they expel toxic substrates against a concentration gradient. The EPs can be classified into two types based on their energy source. The primary EPs directly utilize energy from ATP hydrolysis, while the secondary EPs derive energy from the chemical gradients from protons or sodium ions. The GNB EPs are more complex than GPB EPs and possess tripartite assembly. They can expel a broad spectrum of antibiotics such as quinolones, β-lactams, and tetracycline [12,13,14,15]. Major efflux in GNBs are AcrAB-TolC efflux (E. coli), AcrAD-TolC and AcrEF-TolC (Salmonella enterica). KdeA, KmrA, KpnEP and EefABC in (K. pneumoniae), MexAB-OprM, MexJK-OprM, MexEF-OprN, MexXY-OprM, MexCD-OprJ and MexVW-OprM (P. aeruginosa), SsmE, SdeAB, SdeCDE, SdeXY, SmdAB and SmfY (Serratia marcescens) MarA and AcrAB (Yersinia pestis) CmeABC (C. jejuni) and AdeIJK, AdeABC and AdeFGH (A. baumanii) [16].
The EPs are classified into five families based on the number of membrane-spanning regions, sequence similarity, substrate specificity and energy source used by the pump and the types of molecules exported (Fig. 1).
Fig. 1
Schematic representation of five superfamilies of EPs found in bacteria
(ABC) ATP-Binding Cassette Superfamily [17]; (MFS) Major Facilitator Superfamily [18]; (MATE) Multidrug And Toxic Compound Extrusion Family [19]; (SMR) Small Multi-Drug Resistance Family [20]; (RND) Resistance-Nodulation-Division Superfamily [21].
ATP-binding cassette superfamily
ATP-binding cassette (ABC) transporters are a large superfamily that uses the energy released upon ATP hydrolysis to pump chemicals [22]. They function as influx and efflux proteins, transporting nutrients into cells and removing toxins and drugs from the cell. However, in Eukaryotes, ABC transporters behave as efflux proteins that protect the cell against toxins [23]. A distinguishing feature of ABC transporters is the presence of two transmembrane domains, which help in substrate translocation, and two cytoplasmic ATP-binding domains that generate energy by ATP hydrolysis to move the substrates across the membrane [24]. ABC transporters contain highly conserved motifs such as Walker A and Walker B motifs (binds to ATP) and LSGGQ/KQR (C-motif) [25]. LmrA (involved in the efflux of ethidium, rhodamine G, daunorubicin) was the first bacterial MDR ABC transporter reported and was identified in Lactococcus lactis [26]. A homolog of LmrA, named BmrA, was identified from Bacillus subtilis which expelled drugs such as Hoechst 33342, doxorubicin and 7-amino-actinomycin-D [27]. MacAB-TolC, initially identified as a tripartite pump, is involved in the efflux of macrolide antibiotics, protoporphyrin and heat-stable enterotoxins [28]. Similarly, DrrA (ATP binding) and DrrB (integral membrane protein) from Mycobacterium tuberculosis imparted resistance to doxorubicin and daunorubicin [29]. PatAB in S. pneumoniae is implicated in the efflux of several drugs, including fluoroquinolones [30]. EfrCD, an ABC transporter characterized in Enterococcus faecalis demonstrated enhanced sensitivity to several drugs, such as daunorubicin and doxorubicin [31]. SmrA is an ABC transporter identified in the nosocomial pathogen, Stenotrophomonas maltophilia, which conferred increased resistance to fluoroquinolones and tetracycline [32]. SmdAB, a multidrug efflux transporter, was identified in S. marcescens involved in the transport of antibiotics, norfloxacin and tetracycline [33]. A multidrug EP, VcaM, was identified in V. cholerae, conferring resistance to fluoroquinolones and tetracycline [34]. Recently, YddA was identified as an ABC-type multidrug transporter associated with exporting several substrates, including norfloxacin [35].
Major Facilitator Superfamily
Major Facilitator Superfamily (MFS) transporters are found in most living forms, including humans, and they transport many small compounds across the cell membranes [36]. The gene encoding the MFS transporters is present in high copy numbers. For example, E. coli K-12 likely has more than 70 transporters [37]. Unlike ABC transporters which are primary active transporters depending on ATP hydrolysis, MFS transporters are secondary active transporters moving smaller solute particles depending on the ion gradient created by active transporters [18]. The MFS transporters function as symport, antiport, or uniport and transport a wide range of compounds, including glucose, oligosaccharides, inositols, drugs, amino acids, and nucleosides. Structurally, MFS transporters are composed of 400–600 amino acids that fold into 12 or 14 transmembrane helices [38].
MdfA, an MDR EP identified in E. coli is involved in the transport of lipophilic compounds such as ethidium bromide, rhodamine, daunomycin, rifampin, tetracycline, and puromycin [39]. LmrP, a proton/drug anti-port pump from L. lactis is involved in the extrusion of lincosamide, streptogramin, and tetracycline [40]. Fluoro quinolones, biocides, dyes, quaternary ammonium compounds and antiseptics are substrates of NorA EP from S. aureus and Staphylococcus epidermis [41]. Bmr and Blt of B. subtilis, and QacA of S. aureus are other examples of MFS transporters in GPB [42]. MFS transporters are monomeric in GPB, whereas they possess tripartite assembly in GNB. Tripartite EmrAB-TolC and EmrKY-TolC of E. coli enable the transport of the substrates ie. thiolactomycin, cerulenin, nalidixic acid and nitroxolone across the outer and inner membranes of GNB [43, 44].
Multidrug and toxic compound extrusion family
Multidrug and toxic compound extrusion (MATE) family comprises active secondary transporters and contributes to MDR in V. cholerae and N. gonorrhoeae. MATE family of transporters pump a wide range of toxic compounds from mammalian and bacterial cells harnessing the proton motive force and cation gradient. Many toxic metabolites and antimicrobial drugs are transported across the membrane by the MATE family, contributing to multidrug tolerance [45]. The NorM transporters from V. cholerae and N. gonorrhoeae and DinF transporters from Pyrococcus furiosus and Bacillus halodurans are well characterized [46]. NorM from Vibrio parahaemolyticus can extrude antibiotics, norfloxacin and ciprofloxacin outside the cells energy-dependent [47]. All MATE EPs are frequently made up of 12 transmembrane helices except mammalian MATE transporters, containing one additional helix [48]. MDR EP of the MATE family, MepA, is responsible for the extrusion of norfloxacin, ciprofloxacin and tigecycline [49, 50]. Interestingly, human MATE transporters (hMATE1-K and hMATE2-K) contribute to the transport of drugs, such as cimetidine, metformin, procainamide, cephalexin, and acyclovir [51]. PmpM, a proton-drug anti-transporter belonging to MATE family, associated with extrusion of fluoroquinolones, was identified in P. aeruginosa [52].
Small multidrug resistance family
As their name suggests, SMR transporters are small (~12 kDa) proteins consisting of 100 to 140 amino acids and involved in transporting a variety of lipophilic compounds and antibiotics [53, 54]. A proton gradient or ATP-dependent mechanism drives the transport of the substrates across the membrane. All SMR transporter consists of 4 transmembrane helix with primarily α-helical structure [55]. EmrE is an SMR type transporter in E. coli exchanging H+ with ethidium and tetraphenylphosphonium compounds [56].The SMR transporters are further classified into three subclasses: the small multidrug pumps (SMP), suppressors of groEL mutation proteins (SUG), and paired small multidrug resistance proteins (PSMR) [54]. SMR proteins are encoded by bacterial chromosomes or plasmids and may be present in integrons. SMR transporters confera high level of resistance to several classes of antibiotics, such as β-lactams, cephalosporins co-trimoxazole, and a few aminoglycosides [39].
Resistance-Nodulation-Division Superfamily
The Resistance-Nodulation-Division (RND) efflux protein superfamily was initially identified as proteins related to Heavy Metal Resistance (Ralstonia metallidurans), Nodulation (Mesorhizobium loti) and Cell division (E. coli) [57]. AdeABC is the first characterized RND EP in A. baumannii, conferring multidrug resistance [58]. The components of AdeABC EP are adeA, adeB and adeC encoding membrane fusion proteins, multidrug transporter and outer membrane channel protein, respectively [59]. The adeABC is associated with the active extrusion of fluoroquinolones, tetracycline, macrolides and aminoglycosides [58]. The members of the RND family play a key role in conferring antibiotic resistance in GNB, whereas the MATE family is mainly concerned with resistance in GPB [60]. RND pumps are proton gradient dependent and possess a tripartite assembly with three subunits, an inner membrane protein (IMP), an outer-membrane protein (OMP), and a periplasmic membrane fusion protein (MFP) which connect the other two components. The AcrAB-TolC EP, a well-characterized RND pump, encompasses the outer-membrane channel TolC, the transporter AcrB in the inner membrane, and AcrA, a periplasmic component interacting with the TolC and AcrB. The crystal structure of AcrB confirmed that it is a homotrimer [61]. The AcrAB-TolC EP transports several compounds and imparts resistance to antibiotics [62]. Another well-studied RND transporter is MexA-MexB-OprM from P. aeruginosa, actively extruding tetracycline, norfloxacin, and chloramphenicol [63]. E. coli RND transporter, SecDF, is a proton-dependent protein translocation factor that functions as a protein exporter [64]. RND efflux system, VexB, VexD, VexK and VexH, identified in V. cholerae, exhibited resistance to bile salts and several antimicrobial agents [11].
Efflux pumps and their role in virulence and biofilm formation
It has been demonstrated that the efflux of several host-derived antimicrobials agents, such as bile salts, facilitates colonization and increases bacterial adaptation to the host digestive tract [65]. In E. coli, the RND EP, AcrAB-TolC, primarily involved in drug efflux, can also impart bile salt resistance [10]. Biofilms are complex microbial communities attached to several surfaces, including implanted devices such as urinary catheters. It is well-known that bacteria encased in biofilm show a greater degree of antibiotic resistance than planktonic cells. The relationship between antimicrobial tolerance of biofilm and EPs has been reported in several bacterial species [66]. For example, the antimicrobial tolerance of biofilms in P. aeruginosa increases due to the expression of the multidrug EPs MexAB-OprM and MexEF-OprN [67]. The upregulation of EPs affects the flagellar motility, which plays a crucial role in biofilm formation [68]. The deletion of genes encoding RND EP diminished the ability of biofilm formation in S. maltophilia and the retraction of flagellar formation [69]. Intriguingly, the upregulation of RND efflux causes inhibition of the type III secretion system in P. aeruginosa, which deliver bacterial toxins into the host cell, thus reducing the virulence [70].
AcrAB-TolC, MexAB-OprM, AdeFGH and AcrD are crucial in biofilm formation. Numerous studies have examined the relationship between EPs and biofilm formation [71,72,73]. Gene expression studies using microarrays have shown that efflux encoding genes, mdtF and lsrA are upregulated during biofilm formation and QS in E. coli [8]. Klebsiella sp. isolates exhibiting efflux activity formed strong biofilm [74]. A strong correlation exists between the overexpression of the AdeFGH EP and biofilm formation by clinical isolates of A. baumannii [6]. Further, efflux genes yihN and mdtO are overexpressed in E. coli biofilms and are involved in the efflux of glucose, a major constituent of the extracellular polymer matrix [75]. An MDR EP, YhcQ confer drug resistance in the E. coli biofilm, whereas TolC plays an important role in the adhesion and biofilm formation in enteroaggregative E. coli [66]. MexAB-OprM EP extruded tetracycline, chloramphenicol, quinolones and β-lactams in P. aeruginosa biofilms [76]. Correlation between biofilm formation, drug resistance, and efflux mechanism has been reported in P. aeruginosa recently. In addition, the occurance of such cases may be a major public health concern in the treatment of infections caused by the pathogen [77]. Several EP genes, ie. acrA, emrB, oqxA are overexpressed in K. pneumoniae biofilms [71]. Deletion of the bcr gene decreased the biofilm formation of P. mirabilis and reduced catheter blockage [78]. Similarly, deletion of EP encoding genes (acrB, acrD, acrEF, emrAB, macAB, mdfA, mdsABC, mdtABC, mdtK, and tolC) impaired biofilm formation in Salmonella enterica [79]. The EPs play an important role in Helicobacter pylori biofilm drug resistance. Studies have shown upregulation of EP encoding genes (kefB, hefA, yckJ, tetA, gln, crdB/hefG and ybhS) in biofilm compared to planktonic cells [80]. These data, taken together, strongly show a relationship between efflux activity and biofilm development.
Efflux Pump Inhibitors
Efflux abolition could be accomplished by various means: (i) controlling the expression of EPs (ii) discovering new antibacterial agents that do not act as substrates, (iii) identifying small molecules inhibiting the EPs or mimicking the substrates and subsequently blocking EP [15]. The Efflux Pump Inhibitors (EPIs) are molecules capable of inhibiting EPs and preventing the extrusion of foreign compounds. EPIs, inhibit EPs by one or more mechanisms mentioned above. The synergistic activity of EPI and the antibiotics can strengthen their efficacy against bacteria expressing EPs, as this might lead to an adequate accumulation of an antibiotic inside the cell. Eventhough several EPIs have been identified at the experimental level in recent years, none have been approved by the FDA and used therapeutically.
The relationship between EPs and biofilm formation is well understood, therefore, EPIs can also reduce biofilm formation. Several EPIs act as biofilm disruptors, e.g., the combinations of EPIs, thioridazine with Phenylalanine-arginine β-naphthylamide (PaβN) and thioridazine with 1-naphthylmethyl-piperazine (NMP) reduced 80–99% of biofilm formation in E. coli [81]. Biofilm inhibitors such as reserpine, linoleic acid, berberine and curcumin exhibited efflux inhibitory activity in K. pneumoniae [82]. EPIs can also act as adjuvants, e.g., PAβN and NMP can compete with levofloxacin for the binding site of RND pumps (MexAB, MexCD and MexEF) in P. aeruginosa and E. coli (AcrAB and AcrEF), thereby increasing the accumulation of levofloxacin [83, 84]. A competitive interaction between PAβN and polyamine potentiates the tetracycline concentration and abolishes biofilm formation in P. aeruginosa [85]. Other clinically approved drugs such as nilotinib, dihydroergotamine, ergoloid, azelastine, doxazosin and telmisartan are competitive inhibitors of ciprofloxacin [86]. Mahey et al., identified azoles as putative TetK EPI that reduced the S. aureus associated biofilm [87]. Fluoxetine and thioridazine drugs can strongly inhibit the biofilm-associated Bcr/CflA efflux system and swarming motility of Proteus mirabilis [88]. Quinazoline derivatives enhanced the inhibitory activity of chloramphenicol and nalidixic acid in EP over-expressing strains of Enterobacter aerogenes, P. aeruginosa and K. pneumonia [89]. Similarly, peptidomimetic EPI, PaβN, increases the antibacterial activity of levofloxacin and erythromycin in MexAB-OprM overexpressing clinical isolates of P. aeruginosa [90]. A novel EPI, conessine reduced the MIC of all antibiotics by 8-fold in MexAB-OprM overexpressed P. aeruginosa through competitive inhibition [91]. Carbonyl-cyanide 3-chlorophenylhydrazone (CCCP) is an important EPI that can disrupt the energy or ATP levels of bacteria (oxidative phosphorylation) and abolishes the efflux of various molecules. It could reverse the colistin resistance of GNB without affective tigecycline and carbapenem resistance [92]. In another study, CCCP showed synergism with ciprofloxacin, imipenem, gentamicin and cefepime in P. aeruginosa [93]. CCCP is a known proton motive force inhibitor of MexAB-OprM overexpressing P. aeruginosa biofilm [94]. Xanthone derivatives effectively inhibit specific EPs such as AcrAB-TolC in S. typhimurium and NorA in S. aureus [95]. Oliveira-Tintino et al., reported that 1,8 naphthyridines reduced the MIC of norfloxacin and ethidium bromide in NorA overexpressing S. aureus strains [96]. The calcium channel blocker verapamil, clinically used to treat cardiac disorders, can inhibit ATP-dependent multidrug resistant EPs and reverse the resistance of rifampicin, ofloxacin, streptomycin, and ethidium bromide in M. tuberculosis. Valinomycin is a potassium-specific EPI extracted from Streptomyces that targets the MFS and ABC EPs. They have been shown to inhibit the P55, an MFS EP that relies on the electrochemical gradient for the active efflux of substrates in M. tuberculosis [97]. The list of EPIs, their mechanism of action, origin and their corresponding target EPs are shown in Table 1.
List of Efflux Pump Inhibitors based on mechanism of action, origin, targets and substrates
The chemical compound must follow specific criteria to make it an ideal EPI. The first and foremost rule is that the molecule must not be antibacterial. Secondly, it should be selective and target only bacterial EPs. Thirdly, it should be non-toxic with high therapeutic and safety indices and good ADMET (Absorption, Distribution, Metabolism, Excretion and Toxicity) [127]. The toxicity of EPI can be lowered by co-administering them with membrane permeabilizing antimicrobial peptides (AMP) such as Polymyxin B nonapeptide (PMBN), which has five times lower toxicity than the parent compound polymyxin B [128]. The nephrotoxicity of PMBN was low when compared to polymyxin B (PMB) and polymyxin E (Colistin) in mice [129]. The cytotoxicity of polyamines towards eukaryotic cells are relatively low, and it would strongly enhance the antibacterial activity [85].
Computational approaches have led to the discovery of novel EPIs such as PAβN, novel pyranopyridine (D13-9001), and novel pyranopyridine (MBX2319) [130]. Molecular dynamics simulation (MDS), advanced three-dimensional structural resolution and molecular modelling can help identify possible inhibitors with pharmacophores that can detect a specific binding site on the EP [131]. Several studies have been made on the correlation of molecular interactions between EPIs and bacterial pumps via molecular docking [132].
In summary, EPs significantly contribute to drug resistance and survival of bacteria in the biofilm by extruding clinically relevant antibiotics. Therefore, the present investigation highlights that EPs could be an attractive target for antimicrobial drug development.
Schematic representation of five superfamilies of EPs found in bacteria(ABC) ATP-Binding Cassette Superfamily [17]; (MFS) Major Facilitator Superfamily [18]; (MATE) Multidrug And Toxic Compound Extrusion Family [19]; (SMR) Small Multi-Drug Resistance Family [20]; (RND) Resistance-Nodulation-Division Superfamily [21].
List of Efflux Pump Inhibitors based on mechanism of action, origin, targets and substrates
Mechanism of action/Compounds
EPIs
Target EPs
Bacteria
Substrates
References
1. Mechanism of Action
Energy Disruption
CCCP-Carbonyl cyanide chlorophenyl hydrazone
MFS- tetA, tetB
H. pylori, Klebsiella spp.
Tetracycline
[98, 99]
Synthetic EPI- IITR08027
MATE- abeM
E. coli, A. baumanii
Fluoroquinolones
[100]
PAβN
RND- mexAB-oprM, mexCD-oprJ, mexEF-oprN
P. aeruginosa
LevofloxacinErythromycinStreptomycin
[90, 101]
Competitive Inhibition
Verapamil
MATE- dinF and norM
M. tuberculosis
BedaquilineOfloxacin
[102]
1-(1-napthylmethyl)-piperazine (NMP)
RND- acrAB, acrEF
E. coli
LevofloxacinRifampinChloramphenicol
[103]
2. Plant origin
Alkaloids
Reserpine (Rawfolia serpentia)
MFS- norA, tetK, Bmr MATE- mepA
S. aureusBacillus subtilisStreptococcus pneumoniae
2019 antibacterial agents in clinical development: an analysis of the antibacterial clinical development pipeline, https://www.who.int/publications-detail-redirect/9789240000193 (2021)2019 antibacterial agents in clinical development: an analysis of the antibacterial clinical development pipelinehttps://www.who.int/publications-detail-redirect/97892400001932021Search in Google Scholar
Kabra R., Chauhan N., Kumar A., Ingale P., Singh S.: Efflux pumps and antimicrobial resistance: Paradoxical components in systems genomics. Prog. Biophys. Mol. Biol.141, 15–24 (2019)KabraR.ChauhanN.KumarA.IngaleP.SinghS.Efflux pumps and antimicrobial resistance: Paradoxical components in systems genomicsProg. Biophys. Mol. Biol.1411524201910.1016/j.pbiomolbio.2018.07.008Search in Google Scholar
Reygaert W.C.: An overview of the antimicrobial resistance mechanisms of bacteria. AIMS. Microbiol.4, 482–501 (2018)ReygaertW.C.An overview of the antimicrobial resistance mechanisms of bacteriaAIMS. Microbiol.4482501201810.3934/microbiol.2018.3.482Search in Google Scholar
Nikaido H.: Multiple antibiotic resistance and efflux. Curr. Opin. Microbiol.1, 516–523 (1998)NikaidoH.Multiple antibiotic resistance and effluxCurr. Opin. Microbiol.1516523199810.1016/S1369-5274(98)80083-0Search in Google Scholar
Langevin A.M., Dunlop M.J.: Stress introduction rate alters the benefit of AcrAB-TolCefflux pumps. J. Bacteriol.200, e00525-17 (2017)LangevinA.M.DunlopM.J.Stress introduction rate alters the benefit of AcrAB-TolCefflux pumpsJ. Bacteriol.200e00525-172017Search in Google Scholar
He X., Lu F., Yuan F., Jiang D., Zhao P., Zhu J., Cheng H., Cao J., Lu G.: Biofilm formation caused by clinical Acinetobacter baumannii isolates is associated with overexpression of the AdeFGH efflux pump. Antimicrob. Agents. Chemother.59, 4817–4825 (2015)HeX.LuF.YuanF.JiangD.ZhaoP.ZhuJ.ChengH.CaoJ.LuG.Biofilm formation caused by clinical Acinetobacter baumannii isolates is associated with overexpression of the AdeFGH efflux pumpAntimicrob. Agents. Chemother.5948174825201510.1128/AAC.00877-15450522726033730Search in Google Scholar
Favre-Bonté S., Köhler T., Van Delden C.: Biofilm formation by Pseudomonas aeruginosa: role of the C4-HSL cell-to-cell signal and inhibition by azithromycin. J. Antimicrob. Chemother.52, 598–604 (2003)Favre-BontéS.KöhlerT.Van DeldenC.Biofilm formation by Pseudomonas aeruginosa: role of the C4-HSL cell-to-cell signal and inhibition by azithromycinJ. Antimicrob. Chemother.52598604200310.1093/jac/dkg39712951348Search in Google Scholar
Schembri M.A., Kjaergaard K., Klemm P.: Global gene expression in Escherichia coli biofilms. Mol. Microbiol. 48, 253–267 (2003)SchembriM.A.KjaergaardK.KlemmP.Global gene expression in Escherichia coli biofilmsMol. Microbiol.48253267200310.1046/j.1365-2958.2003.03432.x12657059Search in Google Scholar
Diggle S.P., Winzer K., Lazdunski A., Williams P., Cámara M.: Advancing the quorum in Pseudomonas aeruginosa: MvaT and the regulation of N-acylhomoserine lactone production and virulence gene expression. J. Bacteriol.184, 2576–2586 (2002)DiggleS.P.WinzerK.LazdunskiA.WilliamsP.CámaraM.Advancing the quorum in Pseudomonas aeruginosa: MvaT and the regulation of N-acylhomoserine lactone production and virulence gene expressionJ. Bacteriol.18425762586200210.1128/JB.184.10.2576-2586.200213501211976285Search in Google Scholar
Thanassi D.G., Cheng L.W., Nikaido H.: Active efflux of bile salts by Escherichia coli. J. Bacteriol.179, 2512–2518 (1997)ThanassiD.G.ChengL.W.NikaidoH.Active efflux of bile salts by Escherichia coliJ. Bacteriol.17925122518199710.1128/jb.179.8.2512-2518.19971789979098046Search in Google Scholar
Taylor D.L., Bina X.R., Bina J.E.: Vibrio cholerae VexH encodes a multiple drug efflux pump that contributes to the production of cholera toxin and the toxin co-regulated pilus. PloS One, 7, e38208 (2012)TaylorD.L.BinaX.R.BinaJ.E.Vibrio cholerae VexH encodes a multiple drug efflux pump that contributes to the production of cholera toxin and the toxin co-regulated pilusPloS One7e38208201210.1371/journal.pone.0038208336422522666485Search in Google Scholar
Schindler B.D., Kaatz G.W.: Multi-drug efflux pumps of Gram-positive bacteria. Drug. Resist. Updat. Rev. Comment. Antimicrob. Anticancer. Chemother.27, 1–13 (2016)SchindlerB.D.KaatzG.W.Multi-drug efflux pumps of Gram-positive bacteriaDrug. Resist. Updat. Rev. Comment. Antimicrob. Anticancer. Chemother.271132016Search in Google Scholar
Li X-Z., Plésiat P., Nikaido H.: The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin. Microbiol. Rev.28, 337–418 (2015)LiX-Z.PlésiatP.NikaidoH.The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteriaClin. Microbiol. Rev.28337418201510.1128/CMR.00117-14440295225788514Search in Google Scholar
Handzlik J., Matys A., Kieć-Kononowicz K.: Recent advances in Multi-Drug Resistance (MDR) efflux pump inhibitors of Gram-positive bacteria S. aureus. Antibiotics, 2, 28–45 (2013)HandzlikJ.MatysA.Kieć-KononowiczK.Recent advances in Multi-Drug Resistance (MDR) efflux pump inhibitors of Gram-positive bacteria S. aureusAntibiotics22845201310.3390/antibiotics2010028Search in Google Scholar
Sharma A., Gupta V.K., Pathania R.: Efflux pump inhibitors for bacterial pathogens: From bench to bedside. Indian. J. Med. Res.149, 129–145 (2019)SharmaA.GuptaV.K.PathaniaR.Efflux pump inhibitors for bacterial pathogens: From bench to bedsideIndian. J. Med. Res.149129145201910.4103/ijmr.IJMR_2079_17Search in Google Scholar
Auda I.G., Ali Salman I.M., Odah J.G.: Efflux pumps of Gram-negative bacteria in brief. Gene Reports, 100666 (2020)AudaI.G.Ali SalmanI.M.OdahJ.G.Efflux pumps of Gram-negative bacteria in briefGene Reports100666202010.1016/j.genrep.2020.100666Search in Google Scholar
Lubelski J., Konings W.N., Driessen A.J.M.: Distribution and physiology of ABC-type transporters contributing to multidrug resistance in bacteria. Microbiol. Mol. Biol. Rev.71, 463–476 (2007)LubelskiJ.KoningsW.N.DriessenA.J.M.Distribution and physiology of ABC-type transporters contributing to multidrug resistance in bacteriaMicrobiol. Mol. Biol. Rev.71463476200710.1128/MMBR.00001-07Search in Google Scholar
Pao SS., Paulsen I.T., Saier M.H. Jr.: Major facilitator superfamily. Microbiol Mol. Biol. Rev.62, 1–34 (1998)PaoSS.PaulsenI.T.SaierM.H.Jr.Major facilitator superfamilyMicrobiol Mol. Biol. Rev.62134199810.1128/MMBR.62.1.1-34.1998Search in Google Scholar
Kuroda T., Tsuchiya T.: Multidrug efflux transporters in the MATE family. Biochim. Biophys. Acta. BBA – Proteins. Proteomics.1794, 763–768 (2009)KurodaT.TsuchiyaT.Multidrug efflux transporters in the MATE familyBiochim. Biophys. Acta. BBA – Proteins. Proteomics.1794763768200910.1016/j.bbapap.2008.11.012Search in Google Scholar
Jack D.L., Yang N.M., Saier M.H Jr.: The drug/metabolite transporter superfamily: The DMT superfamily. Eur. J. Biochem.268, 3620–3639 (2001)JackD.L.YangN.M.SaierM.HJr.The drug/metabolite transporter superfamily: The DMT superfamilyEur. J. Biochem.26836203639200110.1046/j.1432-1327.2001.02265.xSearch in Google Scholar
Nikaido H., Takatsuka Y.: Mechanisms of RND multidrug efflux pumps. Biochim. Biophys. Acta. BBA – Proteins. Proteomics.1794, 769–781 (2009)NikaidoH.TakatsukaY.Mechanisms of RND multidrug efflux pumpsBiochim. Biophys. Acta. BBA – Proteins. Proteomics.1794769781200910.1016/j.bbapap.2008.10.004Search in Google Scholar
Mi W., Li Y., Yoon S.H., Ernst R.K., Walz T., Liao M.: Structural basis of MsbA-mediated lipopolysaccharide transport. Nature,549, 233–237 (2017)MiW.LiY.YoonS.H.ErnstR.K.WalzT.LiaoM.Structural basis of MsbA-mediated lipopolysaccharide transportNature549233237201710.1038/nature23649Search in Google Scholar
Higgins C.F.: ABC transporters: physiology, structure and mechanism – an overview. Res. Microbiol.152, 205–210 (2001)HigginsC.F.ABC transporters: physiology, structure and mechanism – an overviewRes. Microbiol.152205210200110.1016/S0923-2508(01)01193-7Search in Google Scholar
Xiong J., Mao D., Liu L.: Research progress on the role of ABC transporters in the drug resistance mechanism of intractable epilepsy. BioMed. Res. Int.2015, 1–10 (2015)XiongJ.MaoD.LiuL.Research progress on the role of ABC transporters in the drug resistance mechanism of intractable epilepsyBioMed. Res. Int.2015110201510.1155/2015/194541460048326491660Search in Google Scholar
Wilkens S.: Structure and mechanism of ABC transporters. F1000Prime. Rep.7, 14 (2015)WilkensS.Structure and mechanism of ABC transportersF1000Prime. Rep.714201510.12703/P7-14433884225750732Search in Google Scholar
van Veen H.W., Venema K., Bolhuis H., Oussenko I., Kok J., Poolman B., Driessen A.J., Konings W.N.: Multidrug resistance mediated by a bacterial homolog of the human multidrug transporter MDR1. Proc. Natl. Acad. Sci. USA, 93, 10668–10672 (1996)van VeenH.W.VenemaK.BolhuisH.OussenkoI.KokJ.PoolmanB.DriessenA.J.KoningsW.N.Multidrug resistance mediated by a bacterial homolog of the human multidrug transporter MDR1Proc. Natl. Acad. Sci. USA931066810672199610.1073/pnas.93.20.10668382128855237Search in Google Scholar
Dalmas O., Do Cao M-A., Lugo M.R., Sharom F.J., Di Pietro A., Jault M.A.: Time-resolved fluorescence resonance energy transfer shows that the bacterial multidrug ABC half-transporter BmrA functions as a homodimer. Biochemistry,44, 4312–4321 (2005)DalmasO.Do CaoM-A.LugoM.R.SharomF.J.Di PietroA.JaultM.A.Time-resolved fluorescence resonance energy transfer shows that the bacterial multidrug ABC half-transporter BmrA functions as a homodimerBiochemistry4443124321200510.1021/bi048280915766260Search in Google Scholar
Fitzpatrick A.W.P., Du D. et al.: Structure of the MacAB-TolC ABC-type tripartite multidrug efflux pump. Nat. Microbiol.2, 17070 (2017)FitzpatrickA.W.P.DuD.Structure of the MacAB-TolC ABC-type tripartite multidrug efflux pumpNat. Microbiol.217070201710.1038/nmicrobiol.2017.70544782128504659Search in Google Scholar
Choudhuri B.S., Bhakta S., Barik R., Basu J., Kundu M., Chakrabarti P.: Overexpression and functional characterization of an ABC (ATP-binding cassette) transporter encoded by the genes drrA and drrB of Mycobacterium tuberculosis. Biochem. J.367, 279–285 (2002)ChoudhuriB.S.BhaktaS.BarikR.BasuJ.KunduM.ChakrabartiP.Overexpression and functional characterization of an ABC (ATP-binding cassette) transporter encoded by the genes drrA and drrB of Mycobacterium tuberculosisBiochem. J.367279285200210.1042/bj20020615Search in Google Scholar
Robertson G.T., Doyle T.B., Lynch A.S.: Use of an efflux-deficient Streptococcus pneumoniae strain panel to identify ABC-class multidrug transporters involved in intrinsic resistance to antimicrobial agents. Antimicrob. Agents. Chemother.49, 4781–4783 (2005)RobertsonG.T.DoyleT.B.LynchA.S.Use of an efflux-deficient Streptococcus pneumoniae strain panel to identify ABC-class multidrug transporters involved in intrinsic resistance to antimicrobial agentsAntimicrob. Agents. Chemother.4947814783200510.1128/AAC.49.11.4781-4783.2005128015616251330Search in Google Scholar
Hürlimann L.M., Corradi V., Hohl M., Bloemberg G.V., Tieleman D.P., Seeger M.A.: The heterodimeric ABC transporter EfrCD mediates multidrug efflux in Enterococcus faecalis. Antimicrob. Agents. Chemother.60, 5400–5411 (2016)HürlimannL.M.CorradiV.HohlM.BloembergG.V.TielemanD.P.SeegerM.A.The heterodimeric ABC transporter EfrCD mediates multidrug efflux in Enterococcus faecalisAntimicrob. Agents. Chemother.6054005411201610.1128/AAC.00661-16499786027381387Search in Google Scholar
Al-Hamad A., Upton M., Burnie J.: Molecular cloning and characterization of SmrA, a novel ABC multi-drug efflux pump from Stenotrophomonas maltophilia. J. Antimicrob. Chemother.64, 731–734 (2009)Al-HamadA.UptonM.BurnieJ.Molecular cloning and characterization of SmrA, a novel ABC multi-drug efflux pump from Stenotrophomonas maltophiliaJ. Antimicrob. Chemother.64731734200910.1093/jac/dkp27119643774Search in Google Scholar
Matsuo T., Chen J., Minato Y., Ogawa W., Mizushima T., Kuroda T., Tsuchiya T.: SmdAB, a heterodimeric ABC-type multi-drug efflux pump, in Serratia marcescens. J. Bacteriol.190, 648–654 (2008)MatsuoT.ChenJ.MinatoY.OgawaW.MizushimaT.KurodaT.TsuchiyaT.SmdAB, a heterodimeric ABC-type multi-drug efflux pump, in Serratia marcescensJ. Bacteriol.190648654200810.1128/JB.01513-07222369118024518Search in Google Scholar
Huda N., Lee E-W., Chen J., Morita Y., Kuroda T., Mizushima T., Tsuchiya T.: Molecular cloning and characterization of an ABC multidrug efflux pump, VcaM, in non-O1 Vibrio cholerae. Antimicrob. Agents. Chemother.47, 413–2417 (2003)HudaN.LeeE-W.ChenJ.MoritaY.KurodaT.MizushimaT.TsuchiyaT.Molecular cloning and characterization of an ABC multidrug efflux pump, VcaM, in non-O1 Vibrio choleraeAntimicrob. Agents. Chemother.474132417200310.1128/AAC.47.8.2413-2417.2003Search in Google Scholar
Feng Z., Liu D., Liu Z., Liang Y., Wang Y., Liu Q., Liu Z., Zang Z., Cui Y.: Cloning and functional characterization of putative Escherichia coli ABC multidrug efflux transporter YddA. J. Microbiol. Biotechnol.30, 982–995 (2020)FengZ.LiuD.LiuZ.LiangY.WangY.LiuQ.LiuZ.ZangZ.CuiY.Cloning and functional characterization of putative Escherichia coli ABC multidrug efflux transporter YddAJ. Microbiol. Biotechnol.30982995202010.4014/jmb.2003.03003Search in Google Scholar
Quistgaard E.M., Löw C., Guettou F., Nordlund P.: Understanding transport by the major facilitator superfamily (MFS): structures pave the way. Nat. Rev. Mol. Cell. Biol.17, 123–132 (2016)QuistgaardE.M.LöwC.GuettouF.NordlundP.Understanding transport by the major facilitator superfamily (MFS): structures pave the wayNat. Rev. Mol. Cell. Biol.17123132201610.1038/nrm.2015.25Search in Google Scholar
Ren Q., Chen K., Paulsen I.T.: TransportDB: a comprehensive database resource for cytoplasmic membrane transport systems and outer membrane channels. Nucleic. Acids. Res.35, D274–D279 (2007)RenQ.ChenK.PaulsenI.T.TransportDB: a comprehensive database resource for cytoplasmic membrane transport systems and outer membrane channelsNucleic. Acids. Res.35D274D279200710.1093/nar/gkl925Search in Google Scholar
Henderson P.J.: The 12-transmembrane helix transporters. Curr. Opin. Cell. Biol.5, 708–721 (1993)HendersonP.J.The 12-transmembrane helix transportersCurr. Opin. Cell. Biol.5708721199310.1016/0955-0674(93)90144-FSearch in Google Scholar
Edgar R., Bibi E.: MdfA, an Escherichia coli multi-drug resistance protein with an extraordinarily broad spectrum of drug recognition. J. Bacteriol.179, 2274 (1997)EdgarR.BibiE.MdfA, an Escherichia coli multi-drug resistance protein with an extraordinarily broad spectrum of drug recognitionJ. Bacteriol.1792274199710.1128/jb.179.7.2274-2280.19971789649079913Search in Google Scholar
Putman M., van Veen H.W., Degener J.E., Konings W.N.: The lactococcal secondary multidrug transporter LmrP confers resistance to lincosamides, macrolides, streptogramins and tetracyclines. Microbiology, 147, 2873–2880 (2001)PutmanM.van VeenH.W.DegenerJ.E.KoningsW.N.The lactococcal secondary multidrug transporter LmrP confers resistance to lincosamides, macrolides, streptogramins and tetracyclinesMicrobiology14728732880200110.1099/00221287-147-10-287311577166Search in Google Scholar
Fontaine F., Hequet A., Voisin-Chiret A.S., Bouillon A., Lesnard A., Cresteil T., Jolivalt C., Rault S.: First identification of boronic species as novel potential inhibitors of the Staphylococcus aureusNorA efflux pump. J. Med. Chem.57, 2536–2548 (2014)FontaineF.HequetA.Voisin-ChiretA.S.BouillonA.LesnardA.CresteilT.JolivaltC.RaultS.First identification of boronic species as novel potential inhibitors of the Staphylococcus aureusNorA efflux pumpJ. Med. Chem.5725362548201410.1021/jm401808n24499135Search in Google Scholar
Bolhuis H., van Veen H.W., Poolman B., Driessen A.J., Konings W.N.: Mechanisms of multidrug transporters. FEMS. Microbiol. Rev.21, 55–84 (1997)BolhuisH.van VeenH.W.PoolmanB.DriessenA.J.KoningsW.N.Mechanisms of multidrug transportersFEMS. Microbiol. Rev.215584199710.1111/j.1574-6976.1997.tb00345.x9299702Search in Google Scholar
Li X.Z., Nikaido H.: Efflux-mediated drug resistance in bacteria: an update. Drugs, 69, 1555–1623 (2009)LiX.Z.NikaidoH.Efflux-mediated drug resistance in bacteria: an updateDrugs6915551623200910.2165/11317030-000000000-00000284739719678712Search in Google Scholar
Alav I., Kobylka J., Kuth M.S., Pos K.M., Picard M., Blair J.M.A., Bavro V.N.: Structure, assembly, and function of tripartite efflux and type 1 secretion systems in Gram-negative bacteria. Chem. Rev.121, 5479–5596 (2021)AlavI.KobylkaJ.KuthM.S.PosK.M.PicardM.BlairJ.M.A.BavroV.N.Structure, assembly, and function of tripartite efflux and type 1 secretion systems in Gram-negative bacteriaChem. Rev.12154795596202110.1021/acs.chemrev.1c00055827710233909410Search in Google Scholar
Leung Y.M., Holdbrook D.A., Piggot T.J., Khalid S.: The NorM MATE transporter from N. gonorrhoeae: insights into drug and ion binding from atomistic molecular dynamics simulations. Biophys. J.107, 460–468 (2014)LeungY.M.HoldbrookD.A.PiggotT.J.KhalidS.The NorM MATE transporter from N. gonorrhoeae: insights into drug and ion binding from atomistic molecular dynamics simulationsBiophys. J.107460468201410.1016/j.bpj.2014.06.005410406025028887Search in Google Scholar
Radchenko M., Symersky J., Nie R., Lu M.: Structural basis for the blockade of MATE multidrug efflux pumps. Nat. Commun.6, 1–11 (2015)RadchenkoM.SymerskyJ.NieR.LuM.Structural basis for the blockade of MATE multidrug efflux pumpsNat. Commun.6111201510.1038/ncomms8995486660026246409Search in Google Scholar
Morita Y., Kodama K., Shiota S., Mine T., Kataoka A., Mizushima T., Tsuchiya T.: NorM, a putative multidrug efflux protein, of Vibrio parahaemolyticus and its homolog in Escherichia coli. Antimicrob. Agents. Chemother.42, 5 (1998)MoritaY.KodamaK.ShiotaS.MineT.KataokaA.MizushimaT.TsuchiyaT.NorM, a putative multidrug efflux protein, of Vibrio parahaemolyticus and its homolog in Escherichia coliAntimicrob. Agents. Chemother.425199810.1128/AAC.42.7.17781056829661020Search in Google Scholar
Kusakizako T., Miyauchi H., Ishitani R., Nureki O.: Structural biology of the multidrug and toxic compound extrusion superfamily transporters. Biochim. Biophys. Acta. BBA – Biomembr.1862, 183154 (2020)KusakizakoT.MiyauchiH.IshitaniR.NurekiO.Structural biology of the multidrug and toxic compound extrusion superfamily transportersBiochim. Biophys. Acta. BBA – Biomembr.1862183154202010.1016/j.bbamem.2019.18315431866287Search in Google Scholar
Kaatz G.W., McAleese F., Seo S.M.: Multi-drug resistance in Staphylococcus aureus due to overexpression of a novel multi-drug and toxin extrusion (MATE) transport protein. Anti microb. Agents.Chemother.49, 1857–1864 (2005)KaatzG.W.McAleeseF.SeoS.M.Multi-drug resistance in Staphylococcus aureus due to overexpression of a novel multi-drug and toxin extrusion (MATE) transport proteinAnti microb. Agents.Chemother.4918571864200510.1128/AAC.49.5.1857-1864.2005108764315855507Search in Google Scholar
McAleese F., Petersen P., Ruzin A., Dunman PM., Murphy E., Projan SJ., Bradford PA.: A novel MATE family efflux pump contributes to the reduced susceptibility of laboratory-derived Staphylococcus aureus mutants to tigecycline. Antimicrob. Agents. Chemother.49, 1865–1871 (2005)McAleeseF.PetersenP.RuzinA.DunmanPM.MurphyE.ProjanSJ.BradfordPA.A novel MATE family efflux pump contributes to the reduced susceptibility of laboratory-derived Staphylococcus aureus mutants to tigecyclineAntimicrob. Agents. Chemother.4918651871200510.1128/AAC.49.5.1865-1871.2005108764415855508Search in Google Scholar
Tanihara Y., Masuda S., Sato T., Katsura T., Ogawa O., Inui K.: Substrate specificity of MATE1 and MATE2-K, human multidrug and toxin extrusions/H(+)-organic cation antiporters. Biochem. Pharmacol.74, 359–371 (2007)TaniharaY.MasudaS.SatoT.KatsuraT.OgawaO.InuiK.Substrate specificity of MATE1 and MATE2-K, human multidrug and toxin extrusions/H(+)-organic cation antiportersBiochem. Pharmacol.74359371200710.1016/j.bcp.2007.04.01017509534Search in Google Scholar
He G.X., Kuroda T., Mima T., Morita Y., Mizushima T., Tsuchiya T.: An H(+)–coupled multidrug efflux pump, PmpM, a member of the MATE family of transporters, from Pseudomonas aeruginosa. J. Bacteriol.186, 262–265 (2004)HeG.X.KurodaT.MimaT.MoritaY.MizushimaT.TsuchiyaT.An H(+)–coupled multidrug efflux pump, PmpM, a member of the MATE family of transporters, from Pseudomonas aeruginosaJ. Bacteriol.186262265200410.1128/JB.186.1.262-265.200430344914679249Search in Google Scholar
Heir E., Sundheim G., Holck A.L.: The qacG gene on plasmid pST94 confers resistance to quaternary ammonium compounds in staphylococci isolated from the food industry. J. Appl. Microbiol.86, 378–388 (1999)HeirE.SundheimG.HolckA.L.The qacG gene on plasmid pST94 confers resistance to quaternary ammonium compounds in staphylococci isolated from the food industryJ. Appl. Microbiol.86378388199910.1046/j.1365-2672.1999.00672.x10196743Search in Google Scholar
Bay D.C., Rommens K.L., Turner R.J.: Small multi-drug resistance proteins: A multi-drug transporter family that continues to grow. Biochim. Biophys. Acta. BBA – Biomembr.1778, 1814–1838 (2008)BayD.C.RommensK.L.TurnerR.J.Small multi-drug resistance proteins: A multi-drug transporter family that continues to growBiochim. Biophys. Acta. BBA – Biomembr.177818141838200810.1016/j.bbamem.2007.08.01517942072Search in Google Scholar
Paulsen I.T., Skurray R.A., Tam R., Saier M.H. Jr., Turner R.J., Weiner J.H., Goldberg E.B., Grinius L.L.: The SMR family: a novel family of multidrug efflux proteins involved with the efflux of lipophilic drugs. Mol. Microbiol.19, 1167–1175 (1996)PaulsenI.T.SkurrayR.A.TamR.SaierM.H.Jr.TurnerR.J.WeinerJ.H.GoldbergE.B.GriniusL.L.The SMR family: a novel family of multidrug efflux proteins involved with the efflux of lipophilic drugsMol. Microbiol.1911671175199610.1111/j.1365-2958.1996.tb02462.x8730859Search in Google Scholar
Yerushalmi H., Lebendiker M., Schuldiner S.: EmrE, an Escherichia coli 12-kDa multidrug transporter, exchanges toxic cations and H+ and is soluble in organic solvents. J. Biol. Chem.270, 6856–6863 (1995)YerushalmiH.LebendikerM.SchuldinerS.EmrE, an Escherichia coli 12-kDa multidrug transporter, exchanges toxic cations and H+ and is soluble in organic solventsJ. Biol. Chem.27068566863199510.1074/jbc.270.12.68567896833Search in Google Scholar
Choudhary S., Sar P.: Real-time PCR based analysis of metal resistance genes in metal resistant Pseudomonas aeruginosa strain J007: Real-time PCR-based analysis of metal resistance genes. J. Basic. Microbiol.56, 688–697 (2016)ChoudharyS.SarP.Real-time PCR based analysis of metal resistance genes in metal resistant Pseudomonas aeruginosa strain J007: Real-time PCR-based analysis of metal resistance genesJ. Basic. Microbiol.56688697201610.1002/jobm.20150036426662317Search in Google Scholar
Magnet S., Courvalin P., Lambert T.: Resistance-nodulation-cell division-type efflux pump involved in aminoglycoside resistance in Acinetobacter baumannii strain BM4454. Antimicrob. Agents. Chemother.45, 3375–3380 (2001)MagnetS.CourvalinP.LambertT.Resistance-nodulation-cell division-type efflux pump involved in aminoglycoside resistance in Acinetobacter baumannii strain BM4454Antimicrob. Agents. Chemother.4533753380200110.1128/AAC.45.12.3375-3380.20019084011709311Search in Google Scholar
Xu C., Bilya S.R., Xu W.: adeABC efflux gene in Acinetobacter baumannii. New. Microbes. New. Infect.30, 100549 (2019)XuC.BilyaS.R.XuW.adeABC efflux gene in Acinetobacter baumanniiNew. Microbes. New. Infect.30100549201910.1016/j.nmni.2019.100549653568931193498Search in Google Scholar
Piddock L.J.V.: Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria. Clin. Microbiol. Rev.19, 382–402 (2006)PiddockL.J.V.Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteriaClin. Microbiol. Rev.19382402200610.1128/CMR.19.2.382-402.2006147198916614254Search in Google Scholar
Nakashima R., Sakurai K., Yamasaki S., Nishino K., Yamaguchi A.: Structures of the multi-drug exporter AcrB reveal a proximal multisite drug-binding pocket. Nature, 480, 565–569 (2011)NakashimaR.SakuraiK.YamasakiS.NishinoK.YamaguchiA.Structures of the multi-drug exporter AcrB reveal a proximal multisite drug-binding pocketNature480565569201110.1038/nature1064122121023Search in Google Scholar
Du D., Wang Z., James N.R., Voss J.E., Klimont E., Ohene-Agyei T., Venter H., Chiu W., Luisi B.F.: Structure of the AcrAB-TolC multidrug efflux pump. Nature, 509, 512–515 (2014)DuD.WangZ.JamesN.R.VossJ.E.KlimontE.Ohene-AgyeiT.VenterH.ChiuW.LuisiB.F.Structure of the AcrAB-TolC multidrug efflux pumpNature509512515201410.1038/nature13205436190224747401Search in Google Scholar
Li X.Z., Livermore D.M., Nikaido H.: Role of efflux pump(s) in intrinsic resistance of Pseudomonas aeruginosa: resistance to tetracycline, chloramphenicol, and norfloxacin. Antimicrob. Agents. Chemother.38, 1732–1741 (1994)LiX.Z.LivermoreD.M.NikaidoH.Role of efflux pump(s) in intrinsic resistance of Pseudomonas aeruginosa: resistance to tetracycline, chloramphenicol, and norfloxacinAntimicrob. Agents. Chemother.3817321741199410.1128/AAC.38.8.17322846307986003Search in Google Scholar
Tsukazaki T.: Structure-based working model of SecDF, a proton-driven bacterial protein translocation factor. FEMS. Microbiol. Lett.365, 112 (2018)TsukazakiT.Structure-based working model of SecDF, a proton-driven bacterial protein translocation factorFEMS. Microbiol. Lett.365112201810.1093/femsle/fny112597478929718185Search in Google Scholar
Alcalde-Rico M, Hernando-Amado S, Blanco P, Martínez J.L.: Multidrug efflux pumps at the crossroad between antibiotic resistance and bacterial virulence. Front. Microbiol.7, 1483 (2016)Alcalde-RicoMHernando-AmadoSBlancoPMartínezJ.L.Multidrug efflux pumps at the crossroad between antibiotic resistance and bacterial virulenceFront. Microbiol.71483201610.3389/fmicb.2016.01483503025227708632Search in Google Scholar
Soto S.M.: Role of efflux pumps in the antibiotic resistance of bacteria embedded in a biofilm. Virulence, 4, 223–229 (2013)SotoS.M.Role of efflux pumps in the antibiotic resistance of bacteria embedded in a biofilmVirulence4223229201310.4161/viru.23724371198023380871Search in Google Scholar
Liao J., Schurr M.J., Sauer K.: The MerR-like regulator BrlR confers biofilm tolerance by activating multidrug efflux pumps in Pseudomonas aeruginosa biofilms. J. Bacteriol.195, 3352–3363 (2013)LiaoJ.SchurrM.J.SauerK.The MerR-like regulator BrlR confers biofilm tolerance by activating multidrug efflux pumps in Pseudomonas aeruginosa biofilmsJ. Bacteriol.19533523363201310.1128/JB.00318-13371954023687276Search in Google Scholar
Houry A., Gohar M., Deschamps J., Tischenko E., Aymerich S., Gruss A., Briandet R.: Bacterial swimmers that infiltrate and take over the biofilm matrix. Proc. Natl. Acad. Sci.109, 13088–1309313 (2012)HouryA.GoharM.DeschampsJ.TischenkoE.AymerichS.GrussA.BriandetR.Bacterial swimmers that infiltrate and take over the biofilm matrixProc. Natl. Acad. Sci.109130881309313201210.1073/pnas.1200791109342016222773813Search in Google Scholar
Lin Y.T., Huang Y.W., Chen S.J., Chang C.W., Yang T.C.: The SmeYZ efflux pump of Stenotrophomonas maltophilia contributes to drug resistance, virulence-related characteristics, and virulence in mice. Antimicrob. Agents. Chemother.59, 4067–4073 (2015)LinY.T.HuangY.W.ChenS.J.ChangC.W.YangT.C.The SmeYZ efflux pump of Stenotrophomonas maltophilia contributes to drug resistance, virulence-related characteristics, and virulence in miceAntimicrob. Agents. Chemother.5940674073201510.1128/AAC.00372-15446872125918140Search in Google Scholar
Linares J.F., López J.A., Camafeita E., Albar J.P., Rojo F., Martínez J.L.: Overexpression of the multidrug efflux pumps MexCD-OprJ and MexEF-OprN is associated with a reduction of type III secretion in Pseudomonas aeruginosa. J. Bacteriol.187, 1384–1391 (2005)LinaresJ.F.LópezJ.A.CamafeitaE.AlbarJ.P.RojoF.MartínezJ.L.Overexpression of the multidrug efflux pumps MexCD-OprJ and MexEF-OprN is associated with a reduction of type III secretion in Pseudomonas aeruginosaJ. Bacteriol.18713841391200510.1128/JB.187.4.1384-1391.200554560815687203Search in Google Scholar
Tang M., Wei X., Wan X., Ding Z., Ding Y., Liu J.: The role and relationship with efflux pump of biofilm formation in Klebsiella pneumoniae. Microb. Pathog.147, 104244 (2020)TangM.WeiX.WanX.DingZ.DingY.LiuJ.The role and relationship with efflux pump of biofilm formation in Klebsiella pneumoniaeMicrob. Pathog.147104244202010.1016/j.micpath.2020.10424432437832Search in Google Scholar
Sánchez P., Linares J.F., Ruiz-Díez B., Campanario E., Navas A., Baquero F., Martínez J.L.: Fitness of in vitro selected Pseudomonas aeruginosa nalB and nfxB multidrug resistant mutants. J. Antimicrob. Chemother.50, 657–664 (2002)SánchezP.LinaresJ.F.Ruiz-DíezB.CampanarioE.NavasA.BaqueroF.MartínezJ.L.Fitness of in vitro selected Pseudomonas aeruginosa nalB and nfxB multidrug resistant mutantsJ. Antimicrob. Chemother.50657664200210.1093/jac/dkf18512407121Search in Google Scholar
Alav I., Sutton J.M., Rahman K.M.: Role of bacterial efflux pumps in biofilm formation. J. Antimicrob. Chemother.73, 2003–2020 (2018)AlavI.SuttonJ.M.RahmanK.M.Role of bacterial efflux pumps in biofilm formationJ. Antimicrob. Chemother.7320032020201810.1093/jac/dky04229506149Search in Google Scholar
Akinpelu S., Ajayi A., Smith S.I., Adeleye A.I.: Efflux pump activity, biofilm formation and antibiotic resistance profile of Klebsiella spp. isolated from clinical samples at Lagos University Teaching Hospital. BMC Res. Notes.13, 1–5 (2020)AkinpeluS.AjayiA.SmithS.I.AdeleyeA.I.Efflux pump activity, biofilm formation and antibiotic resistance profile of Klebsiella spp. isolated from clinical samples at Lagos University Teaching HospitalBMC Res. Notes.1315202010.1186/s13104-020-05105-2724940732456668Search in Google Scholar
Pasqua M., Grossi M., Zennaro A., Fanelli G., Micheli G., Barras F., Colonna B., Prosseda G.: The varied role of efflux pumps of the MFS family in the interplay of bacteria with animal and plant cells. Microorganisms, 7, e285 (2019)PasquaM.GrossiM.ZennaroA.FanelliG.MicheliG.BarrasF.ColonnaB.ProssedaG.The varied role of efflux pumps of the MFS family in the interplay of bacteria with animal and plant cellsMicroorganisms7e285201910.3390/microorganisms7090285678098531443538Search in Google Scholar
Scoffone V.C., Trespidi G., Barbieri G., Irudal S., Perrin E., Buroni S.: Role of RND efflux pumps in drug resistance of cystic fibrosis pathogens. Antibiot. Basel. Switz.10, 863 (2021)ScoffoneV.C.TrespidiG.BarbieriG.IrudalS.PerrinE.BuroniS.Role of RND efflux pumps in drug resistance of cystic fibrosis pathogensAntibiot. Basel. Switz.10863202110.3390/antibiotics10070863830070434356783Search in Google Scholar
Ugwuanyi F.C., Ajayi A., Ojo D.A., Adeleye A.I., Smith S.I.: Evaluation of efflux pump activity and biofilm formation in multidrug resistant clinical isolates of Pseudomonas aeruginosa isolated from a Federal Medical Center in Nigeria. Ann. Clin. Microbiol. Antimicrob.20, 11 (2021)UgwuanyiF.C.AjayiA.OjoD.A.AdeleyeA.I.SmithS.I.Evaluation of efflux pump activity and biofilm formation in multidrug resistant clinical isolates of Pseudomonas aeruginosa isolated from a Federal Medical Center in NigeriaAnn. Clin. Microbiol. Antimicrob.2011202110.1186/s12941-021-00417-y785218933531042Search in Google Scholar
Holling N., Jones B.V. et al.: Elucidating the genetic basis of crystalline biofilm formation in Proteus mirabilis. Infect. Immun.82, 1616–1626 (2014)HollingN.JonesB.V.Elucidating the genetic basis of crystalline biofilm formation in Proteus mirabilisInfect. Immun.8216161626201410.1128/IAI.01652-13399340324470471Search in Google Scholar
Baugh S., Ekanayaka A.S., Piddock L.J., Webber M.A.: Loss of or inhibition of all multidrug resistance efflux pumps of Salmonella enterica serovar Typhimurium results in impaired ability to form a biofilm. J. Antimicrob. Chemother.67, 2409–2417 (2012)BaughS.EkanayakaA.S.PiddockL.J.WebberM.A.Loss of or inhibition of all multidrug resistance efflux pumps of Salmonella enterica serovar Typhimurium results in impaired ability to form a biofilmJ. Antimicrob. Chemother.6724092417201210.1093/jac/dks22822733653Search in Google Scholar
Krzyżek P., Grande R., Migdał P., Paluch E., Gościniak G.: Biofilm formation as a complex result of virulence and adaptive responses of Helicobacter pylori. Pathogens, 9, 1062 (2020)KrzyżekP.GrandeR.MigdałP.PaluchE.GościniakG.Biofilm formation as a complex result of virulence and adaptive responses of Helicobacter pyloriPathogens91062202010.3390/pathogens9121062776604433353223Search in Google Scholar
Kvist M., Hancock V., Klemm P.: Inactivation of efflux pumps abolishes bacterial biofilm formation. Appl. Environ. Microbiol.74, 7376–7382 (2008)KvistM.HancockV.KlemmP.Inactivation of efflux pumps abolishes bacterial biofilm formationAppl. Environ. Microbiol.7473767382200810.1128/AEM.01310-08259291218836028Search in Google Scholar
Magesh H., Kumar A., Alam A., Priyam., Sekar U., Sumantran V.N., Vaidyanathan R.: Identification of natural compounds which inhibit biofilm formation in clinical isolates of Klebsiella pneumoniae. Indian. J. Exp. Biol.51, 764–772 (2013)MageshH.KumarA.AlamA.PriyamSekarU.SumantranV.N.VaidyanathanR.Identification of natural compounds which inhibit biofilm formation in clinical isolates of Klebsiella pneumoniaeIndian. J. Exp. Biol.517647722013Search in Google Scholar
Rampioni G., Pillai C.R., Longo F., Bondì R., Baldelli V., Messina M., Imperi F., Visca P., Leoni L.: Effect of efflux pump inhibition on Pseudomonas aeruginosa transcriptome and virulence. Sci. Rep.7, 11392 (2017)RampioniG.PillaiC.R.LongoF.BondìR.BaldelliV.MessinaM.ImperiF.ViscaP.LeoniL.Effect of efflux pump inhibition on Pseudomonas aeruginosa transcriptome and virulenceSci. Rep.711392201710.1038/s41598-017-11892-9559601328900249Search in Google Scholar
Casalone E., Vignolini T., Braconi L., Gardini L., Capitanio M., Pavone F.S., Dei S., Teodori E.: 1-benzyl-1,4-diazepane reduces the efflux of resistance-nodulation-cell division pumps in Escherichia coli. Future. Microbiol.15, 987–999 (2020)CasaloneE.VignoliniT.BraconiL.GardiniL.CapitanioM.PavoneF.S.DeiS.TeodoriE.1-benzyl-1,4-diazepane reduces the efflux of resistance-nodulation-cell division pumps in Escherichia coliFuture. Microbiol.15987999202010.2217/fmb-2019-029632840130Search in Google Scholar
Fleeman R.M., Debevec G., Antonen K., Adams J.L., Santos R.G., Welmaker G.S., Houghten R.A., Giulianotti M.A., Shaw L.N.: Identification of a novel polyamine scaffold with potent efflux pump inhibition activity toward multi-drug resistant bacterial pathogens. Front. Microbiol.9, 1301 (2018)FleemanR.M.DebevecG.AntonenK.AdamsJ.L.SantosR.G.WelmakerG.S.HoughtenR.A.GiulianottiM.A.ShawL.N.Identification of a novel polyamine scaffold with potent efflux pump inhibition activity toward multi-drug resistant bacterial pathogensFront. Microbiol.91301201810.3389/fmicb.2018.01301601054529963035Search in Google Scholar
Zimmermann S., Klinger-Strobel M., Bohnert J.A., Wendler S., Rödel J., Pletz M.W., Löffler B., Tuchscherr L.: Clinically approved drugs inhibit the Staphylococcus aureus multidrug NorA efflux pump and reduce biofilm formation. Front. Microbiol.10, 2762 (2019)ZimmermannS.Klinger-StrobelM.BohnertJ.A.WendlerS.RödelJ.PletzM.W.LöfflerB.TuchscherrL.Clinically approved drugs inhibit the Staphylococcus aureus multidrug NorA efflux pump and reduce biofilm formationFront. Microbiol.102762201910.3389/fmicb.2019.02762690166731849901Search in Google Scholar
Mahey N., Tambat R., Verma D.K., Chandal N., Thakur K.G., Nandanwar H.: Antifungal azoles as tetracycline resistance modifiers in Staphylococcus aureus. Appl. Environ. Microbiol.87, e00155–21 (2021)MaheyN.TambatR.VermaD.K.ChandalN.ThakurK.G.NandanwarH.Antifungal azoles as tetracycline resistance modifiers in Staphylococcus aureusAppl. Environ. Microbiol.87e0015521202110.1128/AEM.00155-21827681033990311Search in Google Scholar
Nzakizwanayo J., Jones B.V. et al.: Fluoxetine and thioridazine inhibit efflux and attenuate crystalline biofilm formation by Proteus mirabilis. Sci. Rep.7, 12222 (2017)NzakizwanayoJ.JonesB.V.Fluoxetine and thioridazine inhibit efflux and attenuate crystalline biofilm formation by Proteus mirabilisSci. Rep.712222201710.1038/s41598-017-12445-w561033728939900Search in Google Scholar
Chevalier J., Mahamoud A., Baitiche M., Adam E., Viveiros M., Smarandache A., Militaru A., Pascu M.L., Amaral L., Pagès J.M.: Quinazoline derivatives are efficient chemosensitizers of antibiotic activity in Enterobacter aerogenes, Klebsiella pneumoniae and Pseudomonas aeruginosa resistant strains. Int. J. Antimicrob. Agents.36, 164–168 (2010)ChevalierJ.MahamoudA.BaiticheM.AdamE.ViveirosM.SmarandacheA.MilitaruA.PascuM.L.AmaralL.PagèsJ.M.Quinazoline derivatives are efficient chemosensitizers of antibiotic activity in Enterobacter aerogenes, Klebsiella pneumoniae and Pseudomonas aeruginosa resistant strainsInt. J. Antimicrob. Agents.36164168201010.1016/j.ijantimicag.2010.03.02720494558Search in Google Scholar
Lomovskaya O., Lee V.J. et al.: Identification and characterization of inhibitors of multidrug resistance efflux pumps in Pseudomonas aeruginosa: novel agents for combination therapy. Antimicrob Agents Chemother.45, 105–116 (2001)LomovskayaO.LeeV.J.Identification and characterization of inhibitors of multidrug resistance efflux pumps in Pseudomonas aeruginosa: novel agents for combination therapyAntimicrob Agents Chemother.45105116200110.1128/AAC.45.1.105-116.20019024711120952Search in Google Scholar
Siriyong T., Srimanote P., Chusri S., Yingyongnarongkul B.E., Suaisom C., Tipmanee V., Voravuthikunchai S.P.: Conessine as a novel inhibitor of multidrug efflux pump systems in Pseudomonas aeruginosa. BMC. Complement. Altern. Med.17, 405 (2017)SiriyongT.SrimanoteP.ChusriS.YingyongnarongkulB.E.SuaisomC.TipmaneeV.VoravuthikunchaiS.P.Conessine as a novel inhibitor of multidrug efflux pump systems in Pseudomonas aeruginosaBMC. Complement. Altern. Med.17405201710.1186/s12906-017-1913-y555731028806947Search in Google Scholar
Osei Sekyere J., Amoako D.G.: Carbonyl cyanide m-chlorophenylhydrazine (CCCP) reverses resistance to colistin, but not to carbapenems and tigecycline in multidrug-resistant Enterobacteriaceae. Front. Microbiol.8, 228 (2017)Osei SekyereJ.AmoakoD.G.Carbonyl cyanide m-chlorophenylhydrazine (CCCP) reverses resistance to colistin, but not to carbapenems and tigecycline in multidrug-resistant EnterobacteriaceaeFront. Microbiol.8228201710.3389/fmicb.2017.00228530628228261184Search in Google Scholar
Adabi M., Talebi-Taher M., Arbabi L., Afshar M., Fathizadeh S., Minaeian S., Moghadam-Maragheh N., Majidpour A.: Spread of efflux pump overexpressing-mediated fluoroquinolone resistance and multidrug resistance in Pseudomonas aeruginosa by using an efflux pump inhibitor. Infect Chemother.47, 98–104 (2015)AdabiM.Talebi-TaherM.ArbabiL.AfsharM.FathizadehS.MinaeianS.Moghadam-MaraghehN.MajidpourA.Spread of efflux pump overexpressing-mediated fluoroquinolone resistance and multidrug resistance in Pseudomonas aeruginosa by using an efflux pump inhibitorInfect Chemother.4798104201510.3947/ic.2015.47.2.98449528126157587Search in Google Scholar
Ikonomidis A., Tsakris A., Kanellopoulou M., Maniatis A.N., Pournaras S.: Effect of the proton motive force inhibitor carbonyl cyanide-m-chlorophenylhydrazone (CCCP) on Pseudomonas aeruginosa biofilm development. Lett. Appl. Cccp Microbiol.47, 298–302 (2008)IkonomidisA.TsakrisA.KanellopoulouM.ManiatisA.N.PournarasS.Effect of the proton motive force inhibitor carbonyl cyanide-m-chlorophenylhydrazone (CCCP) on Pseudomonas aeruginosa biofilm developmentLett. Appl. Cccp Microbiol.47298302200810.1111/j.1472-765X.2008.02430.xSearch in Google Scholar
Durães F., Resende D.I.S.P., Palmeira A., Szemerédi N., Pinto M.M.M., Spengler G., Sousa E.: Xanthones active against multidrug resistance and virulence mechanisms of bacteria. Antibiotics,10, 600 (2021)DurãesF.ResendeD.I.S.P.PalmeiraA.SzemerédiN.PintoM.M.M.SpenglerG.SousaE.Xanthones active against multidrug resistance and virulence mechanisms of bacteriaAntibiotics10600202110.3390/antibiotics10050600815868734069329Search in Google Scholar
Oliveira-Tintino C.D.M., Silva T.G.D. et al.: The 1,8-naphthyridines sulfonamides are NorA efflux pump inhibitors. J. Glob. Antimicrob. Resist.24, 233–240 (2021)Oliveira-TintinoC.D.M.SilvaT.G.D.The 1,8-naphthyridines sulfonamides are NorA efflux pump inhibitorsJ. Glob. Antimicrob. Resist.24233240202110.1016/j.jgar.2020.11.02733385589Search in Google Scholar
Pule C.M., Sampson S.L., Warren R.M., Black P.A., van Helden P.D., Victor T.C., Louw G.E.: Efflux pump inhibitors: targeting myco-bacterial efflux systems to enhance TB therapy. J. Antimicrob. Chemother.71, 17–26 (2016)PuleC.M.SampsonS.L.WarrenR.M.BlackP.A.van HeldenP.D.VictorT.C.LouwG.E.Efflux pump inhibitors: targeting myco-bacterial efflux systems to enhance TB therapyJ. Antimicrob. Chemother.711726201610.1093/jac/dkv31626472768Search in Google Scholar
Fenosa A., Fusté E., Ruiz L., Veiga-Crespo P., Vinuesa T., Guallar V., Villa T.G., Viñas M.: Role of TolC in Klebsiella oxytoca resistance to antibiotics. J. Antimicrob. Chemother.63, 668–674 (2009)FenosaA.FustéE.RuizL.Veiga-CrespoP.VinuesaT.GuallarV.VillaT.G.ViñasM.Role of TolC in Klebsiella oxytoca resistance to antibioticsJ. Antimicrob. Chemother.63668674200910.1093/jac/dkp02719240073Search in Google Scholar
Anoushiravani M., Falsafi T., Niknam V.: Proton motive force-dependent efflux of tetracycline in clinical isolates of Helicobacter pylori. J. Med. Microbiol.58, 1309–1313 (2009)AnoushiravaniM.FalsafiT.NiknamV.Proton motive force-dependent efflux of tetracycline in clinical isolates of Helicobacter pyloriJ. Med. Microbiol.5813091313200910.1099/jmm.0.010876-019574414Search in Google Scholar
Bhattacharyya T., Sharma A., Akhter J., Pathania R.: The small molecule IITR08027 restores the antibacterial activity of fluoroquinolones against multidrug-resistant Acinetobacter baumannii by efflux inhibition. Int. J. Antimicrob. Agents.50, 219–226 (2017)BhattacharyyaT.SharmaA.AkhterJ.PathaniaR.The small molecule IITR08027 restores the antibacterial activity of fluoroquinolones against multidrug-resistant Acinetobacter baumannii by efflux inhibitionInt. J. Antimicrob. Agents.50219226201710.1016/j.ijantimicag.2017.03.00528533185Search in Google Scholar
Renau T.E., Ohta T. et al., Nakayama K.: Inhibitors of efflux pumps in Pseudomonas aeruginosa potentiate the activity of the fluoroquinolone antibacterial levofloxacin. J. Med. Chem.42, 4928–4931 (1999)RenauT.E.OhtaT.NakayamaK.Inhibitors of efflux pumps in Pseudomonas aeruginosa potentiate the activity of the fluoroquinolone antibacterial levofloxacinJ. Med. Chem.4249284931199910.1021/jm990459810585202Search in Google Scholar
Gupta S., Cohen K.A., Winglee K., Maiga M., Diarra B., Bishai W.R.: Efflux inhibition with verapamil potentiates bedaquiline in Mycobacterium tuberculosis. Antimicrob. Agents. Chemother.58, 574–576 (2014)GuptaS.CohenK.A.WingleeK.MaigaM.DiarraB.BishaiW.R.Efflux inhibition with verapamil potentiates bedaquiline in Mycobacterium tuberculosisAntimicrob. Agents. Chemother.58574576201410.1128/AAC.01462-13391072224126586Search in Google Scholar
Bohnert J.A., Kern W.V.: Selected arylpiperazines are capable of reversing multi-drug resistance in Escherichia coli overexpressing RND efflux pumps. Antimicrob. Agents. Chemother.49, 849–852 (2005)BohnertJ.A.KernW.V.Selected arylpiperazines are capable of reversing multi-drug resistance in Escherichia coli overexpressing RND efflux pumpsAntimicrob. Agents. Chemother.49849852200510.1128/AAC.49.2.849-852.200554722315673787Search in Google Scholar
Stavri M., Piddock L.J.V., Gibbons S.: Bacterial efflux pump inhibitors from natural sources. J. Antimicrob. Chemother.59, 1247–1260 (2007)StavriM.PiddockL.J.V.GibbonsS.Bacterial efflux pump inhibitors from natural sourcesJ. Antimicrob. Chemother.5912471260200710.1093/jac/dkl46017145734Search in Google Scholar
Kumar A., Qazi G.N. et al.: Novel structural analogues of piperine as inhibitors of the NorA efflux pump of Staphylococcus aureus. J. Antimicrob. Chemother.61, 1270–1276 (2008)KumarA.QaziG.N.Novel structural analogues of piperine as inhibitors of the NorA efflux pump of Staphylococcus aureusJ. Antimicrob. Chemother.6112701276200810.1093/jac/dkn08818334493Search in Google Scholar
Chan B.C., Leung P.C. et al.: Synergistic effects of baicalein with ciprofloxacin against NorA over-expressed methicillin-resistant Staphylococcus aureus (MRSA) and inhibition of MRSA pyruvate kinase. J. Ethnopharmacol.137, 767–773 (2011)ChanB.C.LeungP.C.Synergistic effects of baicalein with ciprofloxacin against NorA over-expressed methicillin-resistant Staphylococcus aureus (MRSA) and inhibition of MRSA pyruvate kinaseJ. Ethnopharmacol.137767773201110.1016/j.jep.2011.06.03921782012Search in Google Scholar
Fujita M., Shiota S., Kuroda T., Hatano T., Yoshida T., Mizushima T., Tsuchiya T.: Remarkable synergies between baicalein and tetracycline, and baicalein and beta-lactams against methicillin-resistant Staphylococcus aureus. Microbiol. Immunol.49, 391–396 (2005)FujitaM.ShiotaS.KurodaT.HatanoT.YoshidaT.MizushimaT.TsuchiyaT.Remarkable synergies between baicalein and tetracycline, and baicalein and beta-lactams against methicillin-resistant Staphylococcus aureusMicrobiol. Immunol.49391396200510.1111/j.1348-0421.2005.tb03732.x15840965Search in Google Scholar
Stermitz F.R., Lorenz P., Tawara J.N., Zenewicz L.A., Lewis K.: Synergy in a medicinal plant: antimicrobial action of berberine potentiated by 5′-methoxyhydnocarpin, a multidrug pump inhibitor. Proc. Natl. Acad. Sci. U S A.97, 1433–1437 (2000)StermitzF.R.LorenzP.TawaraJ.N.ZenewiczL.A.LewisK.Synergy in a medicinal plant: antimicrobial action of berberine potentiated by 5′-methoxyhydnocarpin, a multidrug pump inhibitorProc. Natl. Acad. Sci. U S A.9714331437200010.1073/pnas.0305405972645110677479Search in Google Scholar
AlMatar M., Albarri O., Makky E.A., Köksal F.: Efflux pump inhibitors: new updates. Pharmacol. Rep. PR.73, 1–16 (2021)AlMatarM.AlbarriO.MakkyE.A.KöksalF.Efflux pump inhibitors: new updatesPharmacol. Rep. PR.73116202110.1007/s43440-020-00160-932946075Search in Google Scholar
SudanoRoccaro A., Blanco A.R., Giuliano F., Rusciano D., Enea V.: Epigallocatechin-gallate enhances the activity of tetracycline in staphylococci by inhibiting its efflux from bacterial cells. Antimicrob. Agents. Chemother.48, 1968–1973 (2004)SudanoRoccaroA.BlancoA.R.GiulianoF.RuscianoD.EneaV.Epigallocatechin-gallate enhances the activity of tetracycline in staphylococci by inhibiting its efflux from bacterial cellsAntimicrob. Agents. Chemother.4819681973200410.1128/AAC.48.6.1968-1973.200441560115155186Search in Google Scholar
Joshi P., Kumar A. et al.: Osthol and curcumin as inhibitors of human Pgp and multidrug efflux pumps of Staphylococcus aureus: reversing the resistance against frontline antibacterial drugs. Med. Chem. Comm.5, 1540–1547 (2014)JoshiP.KumarA.Osthol and curcumin as inhibitors of human Pgp and multidrug efflux pumps of Staphylococcus aureus: reversing the resistance against frontline antibacterial drugsMed. Chem. Comm.515401547201410.1039/C4MD00196FSearch in Google Scholar
Negi N., Prakash P., Gupta M.L., Mohapatra T.M.: Possible role of curcumin as an efflux pump inhibitor in multi drug resistant clinical isolates of Pseudomonas aeruginosa. J. Clin. Diagn. Res. JCDR.8, DC04–DC07 (2014)NegiN.PrakashP.GuptaM.L.MohapatraT.M.Possible role of curcumin as an efflux pump inhibitor in multi drug resistant clinical isolates of Pseudomonas aeruginosaJ. Clin. Diagn. Res. JCDR.8DC04DC07201410.7860/JCDR/2014/8329.4965425315825478340Search in Google Scholar
Roy S., Kumari N., Pahwa S., Agrahari U., Bhutani K., Jachak S., Nandanwar H.: NorA efflux pump inhibitory activity of coumarins from Mesua ferrea. Fitoterapia, 90, 140–150 (2013)RoyS.KumariN.PahwaS.AgrahariU.BhutaniK.JachakS.NandanwarH.NorA efflux pump inhibitory activity of coumarins from Mesua ferreaFitoterapia90140150201310.1016/j.fitote.2013.07.01523892000Search in Google Scholar
Oluwatuyi M., Kaatz G.W., Gibbons S.: Antibacterial and resistance modifying activity of Rosmarinus officinalis. Phytochemistry, 65, 3249–3254 (2004)OluwatuyiM.KaatzG.W.GibbonsS.Antibacterial and resistance modifying activity of Rosmarinus officinalisPhytochemistry6532493254200410.1016/j.phytochem.2004.10.00915561190Search in Google Scholar
Lorenzi V., Muselli A., Bernardini A.F., Berti L., Pagès J.M., Amaral L., Bolla J.M.: Geraniol restores antibiotic activities against multidrug-resistant isolates from Gram-negative species. Antimicrob. Agents. Chemother.53, 2209–2211 (2009)LorenziV.MuselliA.BernardiniA.F.BertiL.PagèsJ.M.AmaralL.BollaJ.M.Geraniol restores antibiotic activities against multidrug-resistant isolates from Gram-negative speciesAntimicrob. Agents. Chemother.5322092211200910.1128/AAC.00919-08Search in Google Scholar
Dwivedi G.R., Tyagi R., Sanchita., Tripathi S., Pati S., Srivastava S.K., Darokar M.P., Sharma A.: Antibiotics potentiating potential of catharanthine against superbug Pseudomonas aeruginosa. J. Biomol. Struct. Dyn.36, 4270–284 (2018)DwivediG.R.TyagiR.SanchitaTripathiS.PatiS.SrivastavaS.K.DarokarM.P.SharmaA.Antibiotics potentiating potential of catharanthine against superbug Pseudomonas aeruginosaJ. Biomol. Struct. Dyn.364270284201810.1080/07391102.2017.1413424Search in Google Scholar
Chevalier J., Atifi S., Eyraud A., Mahamoud A., Barbe J., Pagès J.M.: New pyridoquinoline derivatives as potential inhibitors of the fluoroquinolone efflux pump in resistant Enterobacter aerogenes strains. J. Med. Chem.44, 4023–4026 (2001)ChevalierJ.AtifiS.EyraudA.MahamoudA.BarbeJ.PagèsJ.M.New pyridoquinoline derivatives as potential inhibitors of the fluoroquinolone efflux pump in resistant Enterobacter aerogenes strainsJ. Med. Chem.4440234026200110.1021/jm010911zSearch in Google Scholar
Kaatz G.W., Moudgal V.V., Seo S.M., Hansen J.B., Kristiansen J.E.: Phenylpiperidine selective serotonin reuptake inhibitors interfere with multidrug efflux pump activity in Staphylococcus aureus. Int. J. Antimicrob. Agents.22, 254–261 (2003)KaatzG.W.MoudgalV.V.SeoS.M.HansenJ.B.KristiansenJ.E.Phenylpiperidine selective serotonin reuptake inhibitors interfere with multidrug efflux pump activity in Staphylococcus aureusInt. J. Antimicrob. Agents.22254261200310.1016/S0924-8579(03)00220-6Search in Google Scholar
Opperman T.J., Nguyen S.T.: Recent advances toward a molecular mechanism of efflux pump inhibition. Front. Microbiol.6, 421 (2015)OppermanT.J.NguyenS.T.Recent advances toward a molecular mechanism of efflux pump inhibitionFront. Microbiol.6421201510.3389/fmicb.2015.00421441985925999939Search in Google Scholar
Mahmood H.Y., Jamshidi S., Sutton J.M., Rahman K.M.: Current advances in developing inhibitors of bacterial multi-drug efflux pumps. Curr. Med. Chem.23, 1062–1081 (2016)MahmoodH.Y.JamshidiS.SuttonJ.M.RahmanK.M.Current advances in developing inhibitors of bacterial multi-drug efflux pumpsCurr. Med. Chem.2310621081201610.2174/0929867323666160304150522542565626947776Search in Google Scholar
Vargiu A.V., Ruggerone P., Opperman T.J., Nguyen S.T., Nikaido H.: Molecular mechanism of MBX2319 inhibition of Escherichia coli AcrB multidrug efflux pump and comparison with other inhibitors. Antimicrob. Agents. Chemother.58, 6224–6234 (2014)VargiuA.V.RuggeroneP.OppermanT.J.NguyenS.T.NikaidoH.Molecular mechanism of MBX2319 inhibition of Escherichia coli AcrB multidrug efflux pump and comparison with other inhibitorsAntimicrob. Agents. Chemother.5862246234201410.1128/AAC.03283-14418798725114133Search in Google Scholar
Fontaine F., Héquet A., Voisin-Chiret A.S., Bouillon A., Lesnard A., Cresteil T., Jolivalt C., Rault S.: Boronic species as promising inhibitors of the Staphylococcus aureus NorA efflux pump: study of 6-substituted pyridine-3-boronic acid derivatives. Eur. J. Med. Chem.95, 185–198 (2015)FontaineF.HéquetA.Voisin-ChiretA.S.BouillonA.LesnardA.CresteilT.JolivaltC.RaultS.Boronic species as promising inhibitors of the Staphylococcus aureus NorA efflux pump: study of 6-substituted pyridine-3-boronic acid derivativesEur. J. Med. Chem.95185198201510.1016/j.ejmech.2015.02.05625817769Search in Google Scholar
Zeng B., Wang H., Zou L., Zhang A., Yang X., Guan Z.: Evaluation and target validation of indole derivatives as inhibitors of the AcrAB-TolC efflux pump. Biosci. Biotechnol. Biochem.74, 2237–2241 (2010)ZengB.WangH.ZouL.ZhangA.YangX.GuanZ.Evaluation and target validation of indole derivatives as inhibitors of the AcrAB-TolC efflux pumpBiosci. Biotechnol. Biochem.7422372241201010.1271/bbb.10043321071837Search in Google Scholar
Rana T., Singh S., Kaur N., Pathania K., Gaur U.: A review on efflux pump inhibitors of medically important bacteria from plant sources. Int. J. Pharm. Sci. Rev. Res.26, 101–111 (2014)RanaT.SinghS.KaurN.PathaniaK.GaurU.A review on efflux pump inhibitors of medically important bacteria from plant sourcesInt. J. Pharm. Sci. Rev. Res.261011112014Search in Google Scholar
Abbas H., Shaker G., Khattab R., Askoura M.: A new role of metformin as an efflux pump inhibitor in Klebsiella pneumonia. J. Microbiol. Biotechnol. Food Sci.11, e4232–e4232 (2021)AbbasH.ShakerG.KhattabR.AskouraM.A new role of metformin as an efflux pump inhibitor in Klebsiella pneumoniaJ. Microbiol. Biotechnol. Food Sci.11e4232e4232202110.15414/jmbfs.4232Search in Google Scholar
Lee M.D., Galazzo J.L., Staley A.L., Lee J.C., Warren M.S., Fuernkranz H., Chamberland S., Lomovskaya O., Miller G.H.: Microbial fermentation-derived inhibitors of efflux-pump-mediated drug resistance. Farm. Soc. Chim. Ital. 1989.56, 81–85 (2001)LeeM.D.GalazzoJ.L.StaleyA.L.LeeJ.C.WarrenM.S.FuernkranzH.ChamberlandS.LomovskayaO.MillerG.H.Microbial fermentation-derived inhibitors of efflux-pump-mediated drug resistanceFarm. Soc. Chim. Ital. 1989.568185200110.1016/S0014-827X(01)01002-3Search in Google Scholar
Bhardwaj A.K., Mohanty P.: Bacterial efflux pumps involved in multi-drug resistance and their inhibitors: rejuvinating the antimicrobial chemotherapy. Recent. Patents. Anti-Infect. Drug. Disc.7, 73–89 (2012)BhardwajA.K.MohantyP.Bacterial efflux pumps involved in multi-drug resistance and their inhibitors: rejuvinating the antimicrobial chemotherapyRecent. Patents. Anti-Infect. Drug. Disc.77389201210.2174/15748911279982971022353004Search in Google Scholar
Ferrer-Espada R., Shahrour H., Pitts B., Stewart P.S., Sánchez-Gómez S., Martínez-de-Tejada G.: A permeability-increasing drug synergizes with bacterial efflux pump inhibitors and restores susceptibility to antibiotics in multi-drug resistant Pseudomonas aeruginosa strains. Sci. Rep.9, 3452 (2019)Ferrer-EspadaR.ShahrourH.PittsB.StewartP.S.Sánchez-GómezS.Martínez-de-TejadaG.A permeability-increasing drug synergizes with bacterial efflux pump inhibitors and restores susceptibility to antibiotics in multi-drug resistant Pseudomonas aeruginosa strainsSci. Rep.93452201910.1038/s41598-019-39659-4640111930837499Search in Google Scholar
Keirstead N.D., Kern G. et al.: Early prediction of polymyxin-induced nephrotoxicity with next-generation urinary kidney injury biomarkers. Toxicol. Sci.137, 278–291 (2014)KeirsteadN.D.KernG.Early prediction of polymyxin-induced nephrotoxicity with next-generation urinary kidney injury biomarkersToxicol. Sci.137278291201410.1093/toxsci/kft24724189134Search in Google Scholar
Rathi E., Kumar A., Kini S.G.: Computational approaches in efflux pump inhibitors: current status and prospects. Drug. Discov. Today.25, 1883–1890 (2020)RathiE.KumarA.KiniS.G.Computational approaches in efflux pump inhibitors: current status and prospectsDrug. Discov. Today.2518831890202010.1016/j.drudis.2020.07.01132712312Search in Google Scholar
Pagès J-M., Amaral L., Fanning S.: An original deal for new molecule: reversal of efflux pump activity, a rational strategy to combat Gram-negative resistant bacteria. Curr. Med. Chem.18, 2969–2980 (2011)PagèsJ-M.AmaralL.FanningS.An original deal for new molecule: reversal of efflux pump activity, a rational strategy to combat Gram-negative resistant bacteriaCurr. Med. Chem.1829692980201110.2174/09298671179615046921651484Search in Google Scholar
Mehla J., Zgurskaya H.I. et al.: Predictive rules of efflux inhibition and avoidance in Pseudomonas aeruginosa. mBio.12, 02785–20 (2021)MehlaJ.ZgurskayaH.I.Predictive rules of efflux inhibition and avoidance in Pseudomonas aeruginosamBio.120278520202110.1128/mBio.02785-20784564333468691Search in Google Scholar