Open Access

Evaluation of bacterial uptake, antibacterial efficacy against Escherichia coli, and cytotoxic effects of moxifloxacin-loaded solid lipid nanoparticles


Cite

Martinez JL, Baquero F. Mutation frequencies and antibiotic resistance. Antimicrob Agents Chemother 2000;44:1771–7. doi: 10.1128/ AAC.44.7.1771-1777.2000 Martinez JL Baquero F Mutation frequencies and antibiotic resistance Antimicrob Agents Chemother 2000441771 7 10.1128/ AAC.44.7.1771-1777.2000Open DOISearch in Google Scholar

Boto L, Martinez JL. Ecological and temporal constraints in the evolution of bacterial genomes. Genes (Basel) 2011;2:804–28. doi: 10.3390/genes2040804 Boto L Martinez JL Ecological and temporal constraints in the evolution of bacterial genomes Genes (Basel) 20112804 28 10.3390/genes2040804Open DOISearch in Google Scholar

Mackenzie JS, Jeggo M. The one health approach - why is it so important? Trop Med Infect Dis 2019;4(2):88. doi: 10.3390/ tropicalmed4020088 Mackenzie JS Jeggo M The one health approach - why is it so important? Trop Med Infect Dis 20194288 10.3390/ tropicalmed4020088Open DOISearch in Google Scholar

Martinez JL. General principles of antibiotic resistance in bacteria. Drug Discov Today Technol 2014;11:33–9. doi: 10.1016/j. ddtec.2014.02.001 Martinez JL General principles of antibiotic resistance in bacteria Drug Discov Today Technol 20141133 9 10.1016/j. ddtec.2014.02.001Open DOISearch in Google Scholar

World Health Organization (WHO). Antibiotic Resistance [displayed 15 March 2022]. Available at https://www.who.int/news-room/fact-sheets/detail/antibiotic-resistance World Health Organization (WHO) Antibiotic Resistance [displayed 15 March 2022]. Available at https://www.who.int/news-room/fact-sheets/detail/antibiotic-resistanceSearch in Google Scholar

Yeh YC, Huang TH, Yang SC, Chen CC, Fang JY. Nano-based drug delivery or targeting to eradicate bacteria for infection mitigation: a review of recent advances. Front Chem 2020;8:286. doi: 10.3389/ fchem.2020.00286 Yeh YC Huang TH Yang SC Chen CC Fang JY Nano-based drug delivery or targeting to eradicate bacteria for infection mitigation: a review of recent advances Front Chem 20208286 10.3389/ fchem.2020.00286Open DOISearch in Google Scholar

Sofowora A, Ogunbodede E, Onayade A. The role and place of medicinal plants in the strategies for disease prevention. Afr J Tradit Complement Altern Med 2013;10:210–29. doi: 10.4314/ajtcam.v10i5.2 Sofowora A Ogunbodede E Onayade A The role and place of medicinal plants in the strategies for disease prevention Afr J Tradit Complement Altern Med 201310210 29 10.4314/ajtcam.v10i5.2Open DOISearch in Google Scholar

Chen CH, Lu TK. Development and challenges of antimicrobial peptides for therapeutic applications. Antibiotics (Basel) 2020;9(1):24. doi: 10.3390/antibiotics9010024 Chen CH Lu TK Development and challenges of antimicrobial peptides for therapeutic applications Antibiotics (Basel) 20209124 10.3390/antibiotics9010024Open DOISearch in Google Scholar

Jiang Q, Chen J, Yang C, Yin Y, Yao K. Quorum sensing: a prospective therapeutic target for bacterial diseases. Biomed Res Int 2019;2019:2015978. doi: 10.1155/2019/2015978 Jiang Q Chen J Yang C Yin Y Yao K Quorum sensing: a prospective therapeutic target for bacterial diseases Biomed Res Int 201920192015978 10.1155/2019/2015978Open DOISearch in Google Scholar

Lin DM, Koskella B, Lin HC. Phage therapy: an alternative to antibiotics in the age of multi-drug resistance. World J Gastrointest Pharmacol Ther 2017;8:162–73. doi: 10.4292/wjgpt.v8.i3.162 Lin DM Koskella B Lin HC Phage therapy: an alternative to antibiotics in the age of multi-drug resistance World J Gastrointest Pharmacol Ther 20178162 73 10.4292/wjgpt.v8.i3.162Open DOISearch in Google Scholar

Gebreyohannes G, Nyerere A, Bii C, Sbhatu DB. Challenges of intervention, treatment, and antibiotic resistance of biofilm-forming microorganisms. Heliyon 2019;5(8):e02192. doi: 10.1016/j. heliyon.2019.e02192 Gebreyohannes G Nyerere A Bii C Sbhatu DB Challenges of intervention, treatment, and antibiotic resistance of biofilm-forming microorganisms Heliyon 201958e02192 10.1016/j. heliyon.2019.e02192Open DOISearch in Google Scholar

Arana L, Gallego L, Alkorta I. Incorporation of antibiotics into solid lipid nanoparticles: a promising approach to reduce antibiotic resistance emergence. Nanomaterials (Basel) 2021;11(5):1251. doi: 10.3390/nano11051251 Arana L Gallego L Alkorta I Incorporation of antibiotics into solid lipid nanoparticles: a promising approach to reduce antibiotic resistance emergence Nanomaterials (Basel) 20211151251 10.3390/nano11051251Open DOISearch in Google Scholar

Duan Y, Dhar A, Patel C, Khimani M, Neogi S, Sharma P, Kumar NS, Vekariya RL. A brief review on solid lipid nanoparticles: part and parcel of contemporary drug delivery systems. RSC Adv 2020;10:26777–91. doi: 10.1039/D0RA03491F Duan Y Dhar A Patel C Khimani M Neogi S Sharma P Kumar NS Vekariya RL A brief review on solid lipid nanoparticles: part and parcel of contemporary drug delivery systems RSC Adv 20201026777 91 10.1039/D0RA03491FOpen DOISearch in Google Scholar

Marslin G, Revina AM, Khandelwal VK, Balakumar K, Sheeba CJ, Franklin G. PEGylated ofloxacin nanoparticles render strong antibacterial activity against many clinically important human pathogens. Colloids Surf B Biointerfaces 2015;132:62–70. 10.1016/j.colsurfb.2015.04.050 Marslin G Revina AM Khandelwal VK Balakumar K Sheeba CJ Franklin G PEGylated ofloxacin nanoparticles render strong antibacterial activity against many clinically important human pathogens Colloids Surf B Biointerfaces 201513262 70 10.1016/j.colsurfb.2015.04.050Open DOISearch in Google Scholar

Sheeba CJ, Marslin G, Revina AM, Franklin G. Signaling pathways influencing tumor microenvironment and their exploitation for targeted drug delivery. Nanotechnol Rev 2014;3:123–51. doi: 10.1515/ ntrev-2013-0032 Sheeba CJ Marslin G Revina AM Franklin G Signaling pathways influencing tumor microenvironment and their exploitation for targeted drug delivery Nanotechnol Rev 20143123 51 10.1515/ ntrev-2013-0032Open DOISearch in Google Scholar

Naseri N, Valizadeh H, Zakeri-Milani P. Solid lipid nanoparticles and nanostructured lipid carriers: structure, preparation and application. Adv Pharm Bull 2015;5:305–13. doi: 10.15171/apb.2015.043 Naseri N Valizadeh H Zakeri-Milani P Solid lipid nanoparticles and nanostructured lipid carriers: structure, preparation and application Adv Pharm Bull 20155305 13 10.15171/apb.2015.043Open DOISearch in Google Scholar

Škalko-Basnet N, Vanić Ž. Lipid-based nanopharmaceuticals in antimicrobial therapy. In: Boukherroub R, Szunerits S, Drider D, editors. Functionalized nanomaterials for the management of microbial infection. London: Elsevier; 2017. p. 111–52. Škalko-Basnet N Vanić Ž Lipid-based nanopharmaceuticals in antimicrobial therapy. In Boukherroub R Szunerits S Drider D editors Functionalized nanomaterials for the management of microbial infection London Elsevier 2017 p. 111 52Search in Google Scholar

Severino P, De Hollanda LM, Santini A, Reis LV, Souto SB, Souto EB, Silva MA. Advances in nanobiomaterials for oncology nanomedicine. In: Grumezescu AM, editor. Nanobiomaterials in cancer therapy: Applications of nanobiomaterials. Vol. 7. Chapter 4. New York (NY): William Andrew Publishing; 2016. p. 91–115. Severino P De Hollanda LM Santini A Reis LV Souto SB Souto EB Silva MA Advances in nanobiomaterials for oncology nanomedicine. In Grumezescu AM editor Nanobiomaterials in cancer therapy: Applications of nanobiomaterials. Vol. 7. Chapter 4 New York (NY) William Andrew Publishing; 2016 p. 91 115Search in Google Scholar

Madkhali OA. Perspectives and prospective on solid lipid nanoparticles as drug delivery systems. Molecules 2022;27(5):1543. doi: 10.3390/ molecules27051543 Madkhali OA Perspectives and prospective on solid lipid nanoparticles as drug delivery systems Molecules 20222751543 10.3390/ molecules27051543Open DOISearch in Google Scholar

Esim O, Hascicek C. Lipid-coated nanosized drug delivery systems for an effective cancer therapy. Curr Drug Deliv 2021;18:147–61. doi: 10.2174/1567201817666200512104441 Esim O Hascicek C Lipid-coated nanosized drug delivery systems for an effective cancer therapy Curr Drug Deliv 202118147 61 10.2174/1567201817666200512104441Open DOISearch in Google Scholar

Elmowafy M, Al-Sanea MM. Nanostructured lipid carriers (NLCs) as drug delivery platform: advances in formulation and delivery strategies. Saudi Pharm J 2021;29:999–1012. doi: 10.1016/j.jsps.2021.07.015 Elmowafy M Al-Sanea MM Nanostructured lipid carriers (NLCs) as drug delivery platform: advances in formulation and delivery strategies Saudi Pharm J 202129999 1012 10.1016/j.jsps.2021.07.015Open DOISearch in Google Scholar

Misra S, Chopra K, Sinha VR, Medhi B. Galantamine-loaded solid-lipid nanoparticles for enhanced brain delivery: preparation, characterization, in vitro and in vivo evaluations. Drug Deliv 2016;23:1434–43. doi: 10.3109/10717544.2015.1089956 Misra S Chopra K Sinha VR Medhi B Galantamine-loaded solid-lipid nanoparticles for enhanced brain delivery: preparation, characterization, in vitro and in vivo evaluations Drug Deliv 2016231434 43 10.3109/10717544.2015.1089956Open DOISearch in Google Scholar

Yasir M, Sara UVS. Solid lipid nanoparticles for nose to brain delivery of haloperidol: in vitro drug release and pharmacokinetics evaluation. Acta Pharm Sin B 2014;4:454–63. doi: 10.1016/j.apsb.2014.10.005 Yasir M Sara UVS Solid lipid nanoparticles for nose to brain delivery of haloperidol: in vitro drug release and pharmacokinetics evaluation Acta Pharm Sin B 20144454 63 10.1016/j.apsb.2014.10.005Open DOISearch in Google Scholar

Uner M. Preparation, characterization and physico-chemical properties of solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC): their benefits as colloidal drug carrier systems. Pharmazie 2006;61:375–86. PMID: 16724531 Uner M Preparation, characterization and physico-chemical properties of solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC): their benefits as colloidal drug carrier systems Pharmazie 200661375 86 PMID: 16724531Search in Google Scholar

The National Center for Biotechnology Information (NCBI). PubChem Compound Summary for CID 152946, Moxifloxacin [displayed 15 March 2022]. Available at https://pubchem.ncbi.nlm.nih.gov/compound/Moxifloxacin The National Center for Biotechnology Information (NCBI) PubChem Compound Summary for CID 152946, Moxifloxacin [displayed 15 March 2022]. Available at https://pubchem.ncbi.nlm.nih.gov/compound/MoxifloxacinSearch in Google Scholar

Guay DR. Moxifloxacin in the treatment of skin and skin structure infections. Ther Clin Risk Manag 2006;2:417–34. doi: 10.2147/ tcrm.2006.2.4.417 Guay DR Moxifloxacin in the treatment of skin and skin structure infections Ther Clin Risk Manag 20062417 34 10.2147/ tcrm.2006.2.4.417Open DOISearch in Google Scholar

Scholar E. Levofloxacin. In: Enna SJ, Bylund DB, editors. xPharm: The Comprehensive Pharmacology Reference. New York (NY): Elsevier; 2007. p. 1–6. Scholar E Levofloxacin In Enna SJ Bylund DB editors xPharm: The Comprehensive Pharmacology Reference New York (NY) Elsevier 2007 p. 1 6Search in Google Scholar

Wu D, Ding Y, Yao K, Gao W, Wang Y. Antimicrobial resistance analysis of clinical Escherichia coli isolates in neonatal ward. Front Pediatr 2021;9:670470. doi: 10.3389/fped.2021.670470 Wu D Ding Y Yao K Gao W Wang Y Antimicrobial resistance analysis of clinical Escherichia coli isolates in neonatal ward Front Pediatr 20219670470 10.3389/fped.2021.670470Open DOISearch in Google Scholar

Pinto-Alphandary H, Andremont A, Couvreur P. Targeted delivery of antibiotics using liposomes and nanoparticles: research and applications. Int J Antimicrob Agents 2000;13:155–68. doi: 10.1016/ s0924-8579(99)00121-1 Pinto-Alphandary H Andremont A Couvreur P Targeted delivery of antibiotics using liposomes and nanoparticles: research and applications Int J Antimicrob Agents 200013155 68 10.1016/ s0924-8579(99)00121-1Open DOISearch in Google Scholar

Wong JP, Cherwonogrodzky JW, Di Ninno VL, De la Cruz R, Saravolac EG. Liposome-encapsulates ciprofloxacin for the prevention and treatment of infectious diseases caused by intracellular pathogens. In: Shek PN, editor. Liposomes in biomedical applications. Amsterdam: Harwood Academic Publishers; 1995. p. 105–20. Wong JP Cherwonogrodzky JW Di Ninno VL De la Cruz R Saravolac EG Liposome-encapsulates ciprofloxacin for the prevention and treatment of infectious diseases caused by intracellular pathogens. In Shek PN editor Liposomes in biomedical applications Amsterdam Harwood Academic Publishers; 1995 p. 105 20Search in Google Scholar

Mussi SV, Sawant R, Perche F, Oliveira MC, Azevedo RB, Ferreira LA, Torchilin VP. Novel nanostructured lipid carrier co-loaded with doxorubicin and docosahexaenoic acid demonstrates enhanced in vitro activity and overcomes drug resistance in MCF-7/Adr cells. Pharm Res 2014;31:1882–92. doi: 10.1007/s11095-013-1290-2 Mussi SV Sawant R Perche F Oliveira MC Azevedo RB Ferreira LA Torchilin VP Novel nanostructured lipid carrier co-loaded with doxorubicin and docosahexaenoic acid demonstrates enhanced in vitro activity and overcomes drug resistance in MCF-7/Adr cells Pharm Res 2014311882 92 10.1007/s11095-013-1290-2Open DOISearch in Google Scholar

Topal GR, Kiymaci ME, Özkan Y. Preparation and in vitro characterization of vancomycin loaded PLGA nanoparticles for the treatment of Enterococcus faecalis infections. J Fac Pharm Ankara 2022;46:350–63. doi: 10.33483/jfpau.1073081 Topal GR Kiymaci ME Özkan Y Preparation and in vitro characterization of vancomycin loaded PLGA nanoparticles for the treatment of Enterococcus faecalis infections J Fac Pharm Ankara 202246350 63 10.33483/jfpau.1073081Open DOISearch in Google Scholar

Yurtdaş Kırımlıoğlu G, Özer S, Büyükköroğlu G, Yazan Y. Formulation and in vitro evaluation of moxifloxacin hydrochloride-loaded polymeric nanoparticles for ocular application. Lat Am J Pharm 2018;37:1850–62. Yurtdaş Kırımlıoğlu G Özer S Büyükköroğlu G Yazan Y Formulation and in vitro evaluation of moxifloxacin hydrochloride-loaded polymeric nanoparticles for ocular application. Lat Am J Pharm 2018371850 62Search in Google Scholar

Savaser A, Esim O, Kurbanoglu S, Ozkan SA, Özkan Y. Current perspectives on drug release studies from polymeric nanoparticles. In: Grumezescu AM, editors. Organic materials as smart nanocarriers for drug delivery. New York (NY): William Andrew Publishing; 2018. p. 101–45. Savaser A Esim O Kurbanoglu S Ozkan SA Özkan Y Current perspectives on drug release studies from polymeric nanoparticles. In Grumezescu AM editors Organic materials as smart nanocarriers for drug delivery. New York (NY) William Andrew Publishing; 2018 p. 101 45Search in Google Scholar

The European Committee on Antimicrobial Susceptibility Testing (EUCAST). Breakpoint tables for interpretation of MICs and zone diameters version 12.0, valid from 2022-01-01 [displayed 15 March 2022]. Available at https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_12.0_Breakpoint_Tables.pdf The European Committee on Antimicrobial Susceptibility Testing (EUCAST) Breakpoint tables for interpretation of MICs and zone diameters version 12.0, valid from 2022-01-01 [displayed 15 March 2022]. Available at https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_12.0_Breakpoint_Tables.pdfSearch in Google Scholar

Bacanli M, Esim MO, Erdogan H, Sarper M, Erdem O, Özkan Y. Evaluation of cytotoxic and genotoxic effects of paclitaxel-loaded PLGA nanoparticles in neuroblastoma cells. Food Chem Toxicol 2021;154:112323. doi: 10.1016/j.fct.2021.112323 Bacanli M Esim MO Erdogan H Sarper M Erdem O Özkan Y Evaluation of cytotoxic and genotoxic effects of paclitaxel-loaded PLGA nanoparticles in neuroblastoma cells Food Chem Toxicol 2021154112323 10.1016/j.fct.2021.112323Open DOISearch in Google Scholar

Sarwar A, Katas H, Zin NM. Antibacterial effects of chitosan– tripolyphosphate nanoparticles: impact of particle size molecular weight. J Nanoparticle Res 2014;16:2517. doi: 10.1007/s11051-014-2517-9 Sarwar A Katas H Zin NM Antibacterial effects of chitosan– tripolyphosphate nanoparticles: impact of particle size molecular weight J Nanoparticle Res 2014162517 10.1007/s11051-014-2517-9Open DOISearch in Google Scholar

Martins S, Tho I, Reimold I, Fricker G, Souto E, Ferreira D, Brandl M. Brain delivery of camptothecin by means of solid lipid nanoparticles: formulation design, in vitro and in vivo studies. Int J Pharm 2012;439:49–62. doi: 10.1016/j.ijpharm.2012.09.054 Martins S Tho I Reimold I Fricker G Souto E Ferreira D Brandl M Brain delivery of camptothecin by means of solid lipid nanoparticles: formulation design, in vitro and in vivo studies Int J Pharm 201243949 62 10.1016/j.ijpharm.2012.09.054Open DOISearch in Google Scholar

Schöler N, Olbrich C, Tabatt K, Müller RH, Hahn H, Liesenfeld O. Surfactant, but not the size of solid lipid nanoparticles (SLN) influences viability and cytokine production of macrophages. Int J Pharm 2001;221:57–67. doi: 10.1016/s0378-5173(01)00660-3 Schöler N Olbrich C Tabatt K Müller RH Hahn H Liesenfeld O Surfactant, but not the size of solid lipid nanoparticles (SLN) influences viability and cytokine production of macrophages Int J Pharm 200122157 67 10.1016/s0378-5173(01)00660-3Open DOISearch in Google Scholar

Lages EB, Fernandes RS, Silva JO, de Souza AM, Cassali GD, de Barros ALB, Miranda Ferreira LA. Co-delivery of doxorubicin, docosahexaenoic acid, and alpha-tocopherol succinate by nanostructured lipid carriers has a synergistic effect to enhance antitumor activity and reduce toxicity. Biomed Pharmacother 2020;132:110876. doi: 10.1016/j.biopha.2020.110876 Lages EB Fernandes RS Silva JO de Souza AM Cassali GD de Barros ALB Miranda Ferreira LA Co-delivery of doxorubicin, docosahexaenoic acid, and alpha-tocopherol succinate by nanostructured lipid carriers has a synergistic effect to enhance antitumor activity and reduce toxicity Biomed Pharmacother 2020132110876 10.1016/j.biopha.2020.110876Open DOISearch in Google Scholar

Das S, Ng WK, Kanaujia P, Kim S, Tan RB. Formulation design, preparation and physicochemical characterizations of solid lipid nanoparticles containing a hydrophobic drug: effects of process variables. Colloids Surf B Biointerfaces 2011;88:483–9. doi: 10.1016/j. colsurfb.2011.07.036 Das S Ng WK Kanaujia P Kim S Tan RB Formulation design, preparation and physicochemical characterizations of solid lipid nanoparticles containing a hydrophobic drug: effects of process variables Colloids Surf B Biointerfaces 201188483 9 10.1016/j. colsurfb.2011.07.036Open DOISearch in Google Scholar

Amasya G, Bakar-Ates F, Wintgens V, Amiel C. Layer by layer assembly of core-corona structured solid lipid nanoparticles with beta-cyclodextrin polymers. Int J Pharm 2021;592:119994. doi: 10.1016/j. ijpharm.2020.119994 Amasya G Bakar-Ates F Wintgens V Amiel C Layer by layer assembly of core-corona structured solid lipid nanoparticles with beta-cyclodextrin polymers Int J Pharm 2021592119994 10.1016/j. ijpharm.2020.119994Open DOISearch in Google Scholar

Singh S, Dobhal AK, Jain A, Pandit JK, Chakraborty S. Formulation and evaluation of solid lipid nanoparticles of a water soluble drug: Zidovudine. Chem Pharm Bull (Tokyo) 2010;58:650–5. doi: 10.1248/ cpb.58.650 Singh S Dobhal AK Jain A Pandit JK Chakraborty S Formulation and evaluation of solid lipid nanoparticles of a water soluble drug: Zidovudine Chem Pharm Bull (Tokyo) 201058650 5 10.1248/ cpb.58.650Open DOISearch in Google Scholar

Al-Qushawi A, Rassouli A, Atyabi F, Peighambari SM, Esfandyari-Manesh M, Shams GR, Yazdani A. Preparation and characterization of three tilmicosin-loaded lipid nanoparticles: physicochemical properties and in-vitro antibacterial activities. Iran J Pharm Res 2016;15:663–76. PMCID:PMC5316245 Al-Qushawi A Rassouli A Atyabi F Peighambari SM Esfandyari-Manesh M Shams GR Yazdani A Preparation and characterization of three tilmicosin-loaded lipid nanoparticles: physicochemical properties and in-vitro antibacterial activities Iran J Pharm Res 201615663 76 PMCID:PMC5316245Search in Google Scholar

Müller RH, Radtke M, Wissing SA. Nanostructured lipid matrices for improved microencapsulation of drugs. Int J Pharm 2002;242:121–8. doi: 10.1016/s0378-5173(02)00180-1 Müller RH Radtke M Wissing SA Nanostructured lipid matrices for improved microencapsulation of drugs Int J Pharm 2002242121 8 10.1016/s0378-5173(02)00180-1Open DOISearch in Google Scholar

Ebrahimi S, Farhadian N, Karimi M, Ebrahimi M. Enhanced bactericidal effect of ceftriaxone drug encapsulated in nanostructured lipid carrier against gram-negative Escherichia coli bacteria: drug formulation, optimization, and cell culture study. Antimicrob Resist Infect Control 2020;9(1):28. doi: 10.1186/s13756-020-0690-4 Ebrahimi S Farhadian N Karimi M Ebrahimi M Enhanced bactericidal effect of ceftriaxone drug encapsulated in nanostructured lipid carrier against gram-negative Escherichia coli bacteria: drug formulation, optimization, and cell culture study Antimicrob Resist Infect Control 20209128 10.1186/s13756-020-0690-4Open DOISearch in Google Scholar

Kumar S, Bhanjana G, Kumar A, Taneja K, Dilbaghi N, Kim KH. Synthesis and optimization of ceftriaxone-loaded solid lipid nanocarriers. Chem Phys Lipids 2016;200:126–32. doi: 10.1016/j. chemphyslip.2016.09.002 Kumar S Bhanjana G Kumar A Taneja K Dilbaghi N Kim KH Synthesis and optimization of ceftriaxone-loaded solid lipid nanocarriers Chem Phys Lipids 2016200126 32 10.1016/j. chemphyslip.2016.09.002Open DOISearch in Google Scholar

Esim O, Sarper M, Ozkan CK, Oren S, Baykal B, Savaser A, Ozkan Y. Effect simultaneous delivery with P-glycoprotein inhibitor and nanoparticle administration of doxorubicin on cellular uptake and in vitro anticancer activity. Saudi Pharm J 2020;28:465–72. doi: 10.1016/j. jsps.2020.02.008 Esim O Sarper M Ozkan CK Oren S Baykal B Savaser A Ozkan Y Effect simultaneous delivery with P-glycoprotein inhibitor and nanoparticle administration of doxorubicin on cellular uptake and in vitro anticancer activity Saudi Pharm J 202028465 72 10.1016/j. jsps.2020.02.008Open DOISearch in Google Scholar

Akbar N, Gul J, Siddiqui R, Shah MR, Khan NA. Moxifloxacin and sulfamethoxazole-based nanocarriers exhibit potent antibacterial activities. Antibiotics (Basel) 2021;10(8):964. doi: 10.3390/ antibiotics10080964 Akbar N Gul J Siddiqui R Shah MR Khan NA Moxifloxacin and sulfamethoxazole-based nanocarriers exhibit potent antibacterial activities Antibiotics (Basel) 2021108964 10.3390/ antibiotics10080964Open DOISearch in Google Scholar

Kisich KO, Gelperina S, Higgins MP, Wilson S, Shipulo E, Oganesyan E, Heifets L. Encapsulation of moxifloxacin within poly(butyl cyanoacrylate) nanoparticles enhances efficacy against intracellular Mycobacterium tuberculosis. Int J Pharm 2007;345:154–62. doi: 10.1016/j. ijpharm.2007.05.062 Kisich KO Gelperina S Higgins MP Wilson S Shipulo E Oganesyan E Heifets L Encapsulation of moxifloxacin within poly(butyl cyanoacrylate) nanoparticles enhances efficacy against intracellular Mycobacterium tuberculosis Int J Pharm 2007345154 62 10.1016/j. ijpharm.2007.05.062Open DOISearch in Google Scholar

Tshweu LL, Shemis MA, Abdelghany A, Gouda A, Pilcher LA, Sibuyi NR, Meyer M, Dube A, Balogun MO. Synthesis, physicochemical characterization, toxicity and efficacy of a PEG conjugate and a hybrid PEG conjugate nanoparticle formulation of the antibiotic moxifloxacin. RSC Adv 2020;10:19770–80. doi: 10.1039/C9RA10872F Tshweu LL Shemis MA Abdelghany A Gouda A Pilcher LA Sibuyi NR Meyer M Dube A Balogun MO Synthesis, physicochemical characterization, toxicity and efficacy of a PEG conjugate and a hybrid PEG conjugate nanoparticle formulation of the antibiotic moxifloxacin RSC Adv 20201019770 80 10.1039/C9RA10872FOpen DOISearch in Google Scholar

eISSN:
1848-6312
Languages:
English, Slovenian
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Basic Medical Science, other