Open Access

Exploring Biochar with N-Fertilizer Effects on Soil CO2 Emissions and Physical-Chemical Properties as a Climate Change Mitigation Tool


Cite

Ajayi, A. E., Holthusen, D., & Horn, R. (2016). Changes in microstructural behaviour and hydraulic functions of biochar amended soils. Soil and Tillage Research, 155, 166–175. Search in Google Scholar

Albergel, C., Calvet, J.-C., Gibelin, A.-L., Lafont, S., Roujean, J.-L., Berne, C., Traullé, O., & Fritz, N. (2010). Observed and modelled ecosystem respiration and gross primary production of a grassland in southwestern France. Biogeosciences, 7(5), 1657–1668. https://doi.org/10.5194/bg-7-1657-2010 Search in Google Scholar

Amoakwah, E., Frimpong, K. A., Okae-Anti, D., & Arthur, E. (2017). Soil water retention, air flow and pore structure characteristics after corn cob biochar application to a tropical sandy loam. Geoderma, 307, 189–197. https://doi.org/10.1016/j.geoderma.2017.08.025 Search in Google Scholar

Amonette, J. E., & Joseph, S. (2012). Characteristics of biochar: microchemical properties. In Biochar for environmental management (pp. 65–84). Routledge. Search in Google Scholar

Blanco-Canqui, H. (2017). Biochar and soil physical properties. Soil Science Society of America Journal, 81(4), 687-711. Search in Google Scholar

Cao, L., Zhang, X., Xu, Y., Xiang, W., Wang, R., Ding, F., Hong, P., & Gao, B. (2022). Straw and wood based biochar for CO2 capture: Adsorption performance and governing mechanisms. Separation and Purification Technology, 287, 120592. https://doi.org/10.1016/j.seppur.2022.120592 Search in Google Scholar

Crutzen, P. J. (2006). Albedo enhancement by stratospheric sulfur injections: A contribution to resolve a policy dilemma? Climatic Change, 77(3–4), 211. https://doi.org/10.1007/s10584-006-9101-y Search in Google Scholar

Cybulak, M., Sokołowska, Z., & Boguta, P. (2019). Impact of biochar on physicochemical properties of haplic luvisol soil under different land use: A plot experiment. Agronomy, 9(9), 531. https://doi.org/10.3390/agronomy9090531 Search in Google Scholar

Dong, L., Yang, X., Shi, L., Shen, Y., Wang, L., Wang, J., Li, C., & Zhang, H. (2022). Biochar and nitrogen fertilizer co-application changed SOC content and fraction composition in Huang-Huai-Hai plain, China. Chemosphere, 291, 132925. https://doi.org/10.1016/j.chemosphere.2021.132925 Search in Google Scholar

Dziadowiec, H., & Gonet, S. (1999). Przewodnik Metodyczny do Bada´n Materii Organicznej Gleb [Methodological Guidebook For The Organic Matter Researches]. Prace Komisji Naukowych Polskiego Towarzystwa Naukowego 120. PTG (pp. 31–34). Search in Google Scholar

Elder, J. W., & Lal, R. (2008). Tillage effects on gaseous emissions from an intensively farmed organic soil in North Central Ohio. Soil and Tillage Research, 98(1), 45–55. https://doi.org/10.1016/j.still.2007.10.003 Search in Google Scholar

Feng, W., Yang, F., Cen, R., Liu, J., Qu, Z., Miao, Q., & Chen, H. (2021). Effects of straw biochar application on soil temperature, available nitrogen and growth of corn. Journal of Environmental Management, 277, 111331. https://doi.org/10.1016/j.jenvman.2020.111331 Search in Google Scholar

Guo, F., Zhang, J., Yang, X., He, Q., Ao, L., & Chen, Y. (2020). Impact of biochar on greenhouse gas emissions from constructed wetlands under various influent chemical oxygen demand to nitrogen ratios. Bioresource Technology, 303, 122908. https://doi.org/10.1016/j.biortech.2020.122908 Search in Google Scholar

Guo, R., Qian, R., Yang, L., Khaliq, A., Han, F., Hussain, S., Zhang, P., Cai, T., Jia, Z., Chen, X., & Ren, X. (2022). Interactive effects of maize straw-derived biochar and n fertilization on soil bulk density and porosity, maize productivity and nitrogen use efficiency in arid areas. Journal of Soil Science and Plant Nutrition, 22(4), 4566–4586. https://doi.org/10.1007/s42729-022-00881-1 Search in Google Scholar

Hailegnaw, N. S., Mercl, F., Pračke, K., Száková, J., & Tlustoš, P. (2019). High temperature-produced biochar can be efficient in nitrate loss prevention and carbon sequestration. Geoderma, 338, 48–55. https://doi.org/10.1016/j.geoderma.2018.11.006 Search in Google Scholar

Horák, J., Šimanský, V., Aydin, E., Igaz, D., Buchkina, N., & Balashov, E. (2020). Effects of biochar combined with n-fertilization on soil CO2 emissions, crop yields and relationships with soil properties. Polish Journal of Environmental Studies, 29(5), 3597–3609. https://doi.org/10.15244/pjoes/117656 Search in Google Scholar

Huang, M., Wang, C., Qi, W., Zhang, Z., & Xu, H. (2022). Modelling the integrated strategies of deficit irrigation, nitrogen fertilization, and biochar addition for winter wheat by AquaCrop based on a two-year field study. Field Crops Research, 282, 108510. https://doi.org/10.1016/j.fcr.2022.108510 Search in Google Scholar

Jačka, L., Trakal, L., Ouředníček, P., Pohořelý, M., & Šípek, V. (2018). Biochar presence in soil significantly decreased saturated hydraulic conductivity due to swelling. Soil and Tillage Research, 184, 181–185. Search in Google Scholar

Jung, S., Park, Y.-K., & Kwon, E. E. (2019). Strategic use of biochar for CO2 capture and sequestration. Journal of CO2 Utilization, 32, 128–139. https://doi.org/10.1016/j.jcou.2019.04.012 Search in Google Scholar

Kameyama, K., Miyamoto, T., Shiono, T., & Shinogi, Y. (2012). Influence of sugarcane bagasse-derived biochar application on nitrate leaching in calcaric dark red soil. Journal of Environmental Quality, 41(4), 1131–1137. https://doi.org/10.2134/jeq2010.0453 Search in Google Scholar

Kammann, C. I., Schmidt, H.-P., Messerschmidt, N., Linsel, S., Steffens, D., Müller, C., Koyro, H.-W., Conte, P., & Joseph, S. (2015). Plant growth improvement mediated by nitrate capture in cocomposted biochar. Scientific Reports, 5(1), 11080. https://doi.org/10.1038/srep11080 Search in Google Scholar

Kotuš, T., Šimanský, V., Drgoňová, K., Illéš, M., Wójcik-Gront, E., Balashov, E., Buchkina, N., Aydın, E., & Horák, J. (2022). Combination of biochar with n-fertilizer affects properties of soil and N2O emissions in maize crop. Agronomy, 12(6), 1314. https://doi.org/10.3390/agronomy12061314 Search in Google Scholar

Kubaczyński, A., Walkiewicz, A., Pytlak, A., Grządziel, J., Gałązka, A., & Brzezińska, M. (2023). Application of nitrogen-rich sunflower husks biochar promotes methane oxidation and increases abundance of Methylobacter in nitrogen-poor soil. Journal of Environmental Management, 348, 119324. https://doi.org/10.1016/j.jenvman.2023.119324 Search in Google Scholar

Lawrinenko, M., & Laird, D. A. (2015). Anion exchange capacity of biochar. Green Chemistry, 17(9), 4628–4636. Search in Google Scholar

Lehmann, J., & Joseph, S. (Ed.). (2015). Biochar for environmental management: Science, technology and implementation (2nd ed.). Routledge, Taylor & Francis Group Search in Google Scholar

Li, S., Wang, S., & Shangguan, Z. (2019). Combined biochar and nitrogen fertilization at appropriate rates could balance the leaching and availability of soil inorganic nitrogen. Agriculture, Ecosystems & Environment, 276, 21–30. https://doi.org/10.1016/j.agee.2019.02.013 Search in Google Scholar

Mikhaylov, A., Moiseev, N., Aleshin, K., & Burkhardt, T. (2020). Global climate change and greenhouse effect. Entrepreneurship and Sustainability Issues, 7(4), 2897–2913. https://doi.org/10.9770/jesi.2020.7.4(21) Search in Google Scholar

Montes-Morán, M. A., Suárez, D., Menéndez, J. A., & Fuente, E. (2004). On the nature of basic sites on carbon surfaces: An overview. Carbon, 42(7), 1219–1225. https://doi.org/10.1016/j.carbon.2004.01.023 Search in Google Scholar

Mukherjee, A., Zimmerman, A. R., & Harris, W. (2011). Surface chemistry variations among a series of laboratory-produced biochars. Geoderma, 163(3–4), 247–255. Search in Google Scholar

Shackley, S., Ruysschaert, G., Zwart, K., & Glaser, B. (Ed.). (2016). Biochar in European soils and agriculture: Science and practice. Earthscan from Routledge, Taylor & Francis Group. Search in Google Scholar

Shafawi, A. N., Mohamed, A. R., Lahijani, P., & Mohammadi, M. (2021). Recent advances in developing engineered biochar for CO2 capture: An insight into the biochar modification approaches. Journal of Environmental Chemical Engineering, 9(6), 106869. https://doi.org/10.1016/j.jece.2021.106869 Search in Google Scholar

Takaya, C. A., Fletcher, L. A., Singh, S., Anyikude, K. U., & Ross, A. B. (2016). Phosphate and ammonium sorption capacity of biochar and hydrochar from different wastes. Chemosphere, 145, 518–527. https://doi.org/10.1016/j.chemosphere.2015.11.052 Search in Google Scholar

Wang, Z., Guo, H., Shen, F., Yang, G., Zhang, Y., Zeng, Y., Wang, L., Xiao, H., & Deng, S. (2015). Biochar produced from oak sawdust by Lanthanum (La)-involved pyrolysis for adsorption of ammonium (NH4+), nitrate (NO3-), and phosphate (PO43-). Chemosphere, 119, 646–653. https://doi.org/10.1016/j.chemosphere.2014.07.084 Search in Google Scholar

Yan, Q., Dong, F., Li, J., Duan, Z., Yang, F., Li, X., Lu, J., & Li, F. (2019). Effects of maize straw‐derived biochar application on soil temperature, water conditions and growth of winter wheat. European Journal of Soil Science, 70(6), 1280–1289. https://doi.org/10.1111/ejss.12863 Search in Google Scholar

Yeboah, S., Zhang, R., Cai, L., Li, L., Xie, J., Luo, Z., Wu, J., & Antille, D. L. (2017). Soil water content and photosynthetic capacity of spring wheat as affected by soil application of nitrogen-enriched biochar in a semiarid environment. Photosynthetica, 55(3), 532–542. https://doi.org/10.1007/s11099-016-0672-1 Search in Google Scholar

Yu, L., Yu, M., Lu, X., Tang, C., Liu, X., Brookes, P. C., & Xu, J. (2018). Combined application of biochar and nitrogen fertilizer benefits nitrogen retention in the rhizosphere of soybean by increasing microbial biomass but not altering microbial community structure. Science of the Total Environment, 640–641, 1221–1230. https://doi.org/10.1016/j.scitotenv.2018.06.018 Search in Google Scholar

Yuen, S. H., & Pollard, A. G. (1954). Determination of nitrogen in agricultural materials by the nessler reagent. II. – Micro‐ determinations in Plant Tissue and in Soil Extracts. Journal of the Science of Food and Agriculture, 5(8), 364–369. https://doi.org/10.1002/jsfa.2740050803 Search in Google Scholar

Zhang, L., Jing, Y., Chen, G., Wang, X., & Zhang, R. (2019). Improvement of physical and hydraulic properties of desert soil with amendment of different biochars. Journal of Soils and Sediments, 19, 2984–2996. Search in Google Scholar

eISSN:
1338-5259
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Industrial Chemistry, Green and Sustainable Technology