Open Access

Response of the Soil Organic Matter to Clear-cutting in the Face of Climate Change – a Report from the East Sudety Mountains, South-West Poland


Cite

Amoah-Antwi, C., Kwiatkowska-Malina, J., Szara, E., Fenton, O., Thornton, S. F., & Malina, G. (2022). Assessing factors controlling structural changes of humic acids in soils amended with organic materials to improve soil functionality. Agronomy, 12(2), 283. https://doi.org/10.3390/agronomy12020283 Search in Google Scholar

Barancikova, G., Jerzykiewicz, M., Gomoryova, E., Tobiasova, E., & Litavec, T. (2018). Changes in forest soil organic matter quality affected by windstorm and wildfire. J Soils Sediments, 18, 2738–2747. https://doi.org/10.1007/s11368-018-1942-2 Search in Google Scholar

Baveye, C. P., Schnee, L. S., Boivin, P., Laba, M., & Radulovich, R. (2020). Soil organic matter research and climate change: merely re-storing carbon versus restoring soil functions. Front. Environ. Sci., 8, 579904. https://doi:10.3389/fenvs.2020.579904 Search in Google Scholar

Boguta, P., D’Orazio, V., Senesi, N., Sokołowska, Z., & Szewczuk-Karpisz, K. (2019). Insight into the interaction mechanism of iron ions with soil humic acids. The effect of the pH and chemical properties of humic acids. J. Environ. Manag., 245, 367–374. https://doi.org/10.1016/j.jenvman.2019.05.098 Search in Google Scholar

Borelli, P., Panagos, P., Märker, M., Modugno, S., & Schütt, B. (2017). Assessment of the impacts of clear-cutting on soil loss bywater erosion in Italian forests: First comprehensive monitoring and modelling approach. Catena, 149 (3), 770–781. https://doi.org/10.1016/j.catena.2016.02.017 Search in Google Scholar

Bronick, C. J., & Lal, R. (2005). Soil structure and land managemend: a review. Geoderma, 124, 3–22. https://doi.org/10.1016/j.geoderma.2004.03.005 Search in Google Scholar

Brunetti, G., Mezzapesa, G. N., Traversa A., Bonifacio, E., Farrag, K., Senesi, N., & D’Orazio V. (2016). Characterization of Clay- and Silt-Sized Fractions and Corresponding Humic Acids Along a Terra Rossa Soil Profile. Clean Soil Air Water, 44(10), 1375–1384. https://doi.org/10.1002/clen.201500857 Search in Google Scholar

Cerli, C., Celi, L., Kaiser, K., Guggenberger, G., Johansson, M.-B., Cignetti, A., & Zanini, E. (2008). Changes in humic substances along an age sequence of spruce stands planted on former agricultural land. Organic Geochemistry, 39, 1269–1280. https://doi.org/10.1016/j.orggeochem.2008.06.001 Search in Google Scholar

Dębicka, M., Kocowicz, A., Weber, J., & Jamroz, E. (2016). Organic matter effects on phosphorus sorption in sandy soils. Archives of Agronomy and Soil Science, 62, (6), 840–855. https://doi.org/10.1080/03650340.2015.1083981 Search in Google Scholar

De Nobili, M., Bravo, C., & Chen, Y. (2020). The spontaneous secondary synthesis of soil organic matter components: A critical examination of the soil continuum model theory. Applied Soil Ecology,154, 103655. https://doi.org/10.1016/j.apsoil.2020.103655 Search in Google Scholar

Falsone, G., Celi, L., Capimi, A., Simonov, G., & Bonifacio, E. (2012). The effect of clear cutting on podzolisation and soil karbon dynamice in Boral forests (Middle Taiga zone, Russia). Geoderma, 177–178, 27–38. https://doi.org/10.1016/j.geoderma.2012.01.036 Search in Google Scholar

FAO (2015). USS Working Group WRB, World Reference Base for Soil Resources 2014, Update 2015. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. World Soil Resources Reports No. 106, Rome. Search in Google Scholar

Fukuzawa, K., Shibata, H., Takagi, K., Nomura, M., Kurima, N., Fukazawa, T., Satoh, F., & Sasa, K. (2006). Effects of clear-cutting on nitrogen leaching and fine root dynamics in a cool-temperate forested watershed in northern Japan. For. Ecol. Manag., 225, 257–261. https://doi.org/10.1016/j.foreco.2006.01.001 Search in Google Scholar

Gee, G., & Bauder, J. W. (1986). Particle-size analysis. In: Klute A (ed). Methods of analysis. Part I Agronomy series 9. Am. Soc. Agronomy Soil Sci. Am. Inc. Publ, Madison. Search in Google Scholar

Hayes, M. H. B., Mylotte, R., & Swift, R. S. (2017). Humin: its composition and importance in soil organic matter. Adv. Agron., 143, 47–138. https://doi.org/10.1016/bs.agron.2017.01.001 Search in Google Scholar

Hayes, M. H. B., & Swift, R. S. (2020). Vindication of humic substances as a key component of organic matter in soil and water. Adv. Agron., 163, 1–37. https://doi.org/10.1016/bs.agron.2020.05.001 Search in Google Scholar

James, J., & Harrison, R. (2016). The effect of harvest on forest soil carbon: A meta-analysis. Forests, 7, 308. https://doi.org/10.3390/f7120308 Search in Google Scholar

Jamroz, E. (2012). Properties of soil organic matter in the forest soils under mountain dwarf pine in the Snieznik Klodzki Reserve. Sylwan, 156 (11), 825–832. Search in Google Scholar

Jamroz, E., & Jerzykiewicz, M. (2022). Humic fractions as indicators of soil organic matter responses to clear‐cutting in mountain and lowland conditions of southwestern Poland. Land Degrad Dev., 33 (2), 368–378. https://doi.org/10.1002/ldr.4158 Search in Google Scholar

Jamroz, E., Kocowicz, A., Bekier, J., & Weber, J. (2014). Properties of soil organic matter in Podzols under mountain dwarf pine (Pinus mugo Turra.) and Norway spruce (Picea abies (L.) Karst.) in various stages of dieback in the East Sudety Mountains, Poland. For. Ecol. Manag., 330, 261–270. https://doi.org/10.1016/j.foreco.2014.07.020 Search in Google Scholar

Jasińska, J., Sewerniak, P., & Markiewicz, M. (2019). Links between slope aspect and rate of litter decomposition on inland dunes. Catena, 172, 501–508. https://doi.org/10.1016/j.catena.2018.09.025 Search in Google Scholar

Jerzykiewicz, M., Barancikova, G., Jamroz, E., & Kałuza-Haladyn, A. (2019). Application of EPR Spectroscopy in Studies of Soils from Destroyed Forests. Appl Magn Reson 50, 753–760. https://doi.org/10.1007/s00723-018-1055-5 Search in Google Scholar

Kukla, J., & Kuklova, M. (2008). Growth of Vaccinium myrtillus L. (Ericaceae) in spruce forests damaged by air pollution. Polish Journal of Ecology, 56 (1), 149–155. Search in Google Scholar

Loffredo, E., & Senesi, N. (2006). The role of humic substances in the fate of anthropogenic organic pollutants in soil with emphasis on endocrine disruptor compounds. In I. Twardowska et al. (eds.) Soil and Water Pollution Monitoring, Protection and Remediation, Springer (pp. 3–23). Search in Google Scholar

Lützow, M. V., Kögel – Knabner, I., Ekschmitt, K., Matzner, E., Guggenberger, G., Marschner, B., & Flessa, H. (2006). Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions – a review. European Journal of Soil Science, 57, 426–445. https://doi.org/10.1111/j.1365-2389.2006.00809.x Search in Google Scholar

Martin, D. (2016). XPowderX™ (XPowder, XPowder12): A software package for powder x-ray diffraction analysis. Qualitative, quantitative and microtexture. Search in Google Scholar

Mayer, M., Prescott, C. E., Abakerd, W. E. A, Augustoe, L., Cécillon, L., Ferreirah, G. W. D., Jamesi, J., Jandl, R., Katzensteinera, K., Laclau, J. P., Laganièrem, J., Nouvellonk, Y., Parém, D., Stanturf, J. A., Vanguelovao, E. I., & Vesterdalp, L. (2020). Tamm Review: Influence of forest management activities on soil organic carbon stocks: A knowledge synthesis. For. Ecol. Manag., 466, 118127. https://doi.org/10.1016/j.foreco.2020.118127 Search in Google Scholar

Polláková, N., Šimanský, V., & Kravka, M. (2018). The influence of soil organic matter fractions on aggregates stabilization in agricultural and forest soils of selected Slovak and Czech hilly lands. J Soils Sediments, 18, 2790–2800. https://doi.org/10.1007/s11368-017-1842-x Search in Google Scholar

Prescott, C. E. (2005). Do rates of litter decomposition tell us anything we really need to know? Forest Ecology and Management, 220, 66–74. https://doi.org/10.1016/j.foreco.2005.08.005 Search in Google Scholar

Rice, J. A., & MacCarthy, P. (1991). Statistical evaluation of the elemental composition of humic substances. Organic Geochemistry, 17, (5), 635–648. https://doi.org/10.1016/0146-6380(91)90006-6 Search in Google Scholar

Swift, R. S. (1996). Organic matter characterization. In: Methods of soil analysis. Part 3. Chemical methods – SSSA Book Series no. 5. Soil Science Society of America and American Society of Agronomy (pp. 1011–1068). Search in Google Scholar

Tan, K. H. (2014). Humic Matter in Soil and the Environment: Principles and Controversies (2nd ed.), CRC Press. Search in Google Scholar

Ussiri, D. A. N., & Johnson, C. E. (2007). Organic matter composition and dynamics in a northern hardwood forest ecosystem 15 years after clear-cutting. For. Ecol. Manag., 240, 131–142. https://doi.org/10.1016/j.foreco.2006.12.017 Search in Google Scholar

Weber, J., Tyszka, R., Kocowicz, A., Szadorski, J., Debicka, M., & Jamroz, E. (2012). Mineralogical composition of the clay fraction of soils derived from granitoids of the Sudetes and Fore-Sudetic Block, southwest Poland. European Journal of Soil Science, 63, 762–772. https://doi.org/10.1111/j.1365-2389.2012.01482.x Search in Google Scholar

eISSN:
1338-5259
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Industrial Chemistry, Green and Sustainable Technology