Open Access

Effect of Evapotranspiration on Soil Moisture Dynamics in Top Surface Layer of a Loamy Land in Climate Change Condition


Cite

Autovino, D., Rallo, G., & Provenzano, G. (2018). Predicting soil and plant water status dynamic in olive orchards under different irrigation systems with Hydrus-2D: Model performance and scenario analysis. Agricultural water management, 203, 225–235. https://ideas.repec.org/a/eee/agiwat/v203y2018icp225-235.html Search in Google Scholar

Borah, D. K., & Bera, M. (2003). Watershed-scale hydrologic and nonpoint-source pollution models: Review of mathematical bases. Transactions of the ASAE, 46(6), 1553–1566. https://www.isws.illinois.edu/iswsdocs/journals/BorahTransASAE47-3-789803.pdf Search in Google Scholar

Brocca, L., Ciabatta, L., Massari, C., Camici, S., & Tarpanelli, A. (2017). Soil moisture for hydrological applications: Open questions and new opportunities. Water, 9(2), 140. https://doi.org/10.3390/w9020140 Search in Google Scholar

Daniel, E. B., Camp, J. V., LeBoeuf, E. J., Penrod, J. R., Dobbins, J. P., & Abkowitz, M. D. (2011). Watershed modeling and its applications: A state-of-the-art review. The Open Hydrology Journal, 5(1). https://benthamopen.com/ABSTRACT/TOHYDJ-5-26 Search in Google Scholar

Jenny, H. (2012). The soil resource: origin and behavior (vol. 37). Springer Science & Business Media. https://link.springer.com/book/10.1007/978-1-4612-6112-4 Search in Google Scholar

Kadyampakeni, D. M., Morgan, K. T., Nkedi‐Kizza, P., Schumann, A. W., & Jawitz, J. W. (2018). Modeling Water and Nutrient Movement in Sandy Soils Using HYDRUS‐2D. Journal of environmental quality, 47(6), 1546–1553. https://doi.org/10.2134/jeq2018.02.0056 Search in Google Scholar

Legates, D. R., & McCabe Jr, G. J. (1999). Evaluating the use of “goodness‐of‐fit” measures in hydrologic and hydroclimatic model validation. Water resources research, 35(1), 233–241. https://doi.org/10.1029/1998WR900018 Search in Google Scholar

Li, Y., Yu, Y., Sun, R., Shen, M., & Zhang, J. (2021). Simulation of soil water dynamics in a black locust plantation on the Loess Plateau, western Shanxi Province, China. Water, 13(9), 1213. https://doi.org/10.3390/w13091213 Search in Google Scholar

Marquardt, D. W. (1963). An algorithm for least-squares estimation of nonlinear parameters. Journal of the society for Industrial and Applied Mathematics, 11(2), 431–441. https://www.jstor.org/stable/2098941 Search in Google Scholar

Melone, F., Barbetta, S., Diomede, T., Peruccacci, S., Rossi, M., Tessarolo, A., & Verdecchia, M. (2005). Review and selection of hydrological models – Integration of hydrological models and meteorological inputs. Contract, 12. http://cronfa.swan.ac.uk/Record/cronfa43733 Search in Google Scholar

Mohanty, B. P., Cosh, M. H., Lakshmi, V., & Montzka, C. (2017). Soil moisture remote sensing: State-of-the-science. Vadose Zone Journal, 16(1), 1–9. https://doi.org/10.2136/vzj2016.10.0105 Search in Google Scholar

Mualem, Y. (1976). A new model for predicting the hydraulic conductivity of unsaturated porous media. Water resources research, 12(3), 513–522. https://doi.org/10.1029/WR012i003p00513 Search in Google Scholar

Nanda, A., Sen, S., Jirwan, V., Sharma, A., & Kumar, V. (2018). Understanding plot‐scale hydrology of Lesser Himalayan watershed – A field study and HYDRUS‐2D modelling approach. Hydrological Processes, 32(9), 1254–1266. https://doi.org/10.1002/hyp.11499 Search in Google Scholar

Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I – A discussion of principles. Journal of hydrology, 10(3), 282–290. https://doi.org/10.1016/0022-1694(70)90255-6 Search in Google Scholar

Pan, Z., Tong, Y., Hou, J., Zheng, J., Kang, Y., Wang, Y., & Cao, C. (2021). Hole irrigation process simulation using a soil water dynamical model with parameter inversion method. Agricultural Water Management, 245, 106542. https://doi.org/10.1016/j.agwat.2020.106542 Search in Google Scholar

Pearson, E. S., & Tukey, J. W. (1965). Approximate means and standard deviations based on distances between percentage points of frequency curves. Biometrika, 52(3/4), 533–546. https://doi.org/10.2307/2333703 Search in Google Scholar

Richards, L. A. (1931). Capillary conduction of liquids through porous mediums. physics, 1(5), 318–333. https://doi.org/10.1063/1.1745010 Search in Google Scholar

Saifadeen, A., & Gladneyva, R. (2012). Modeling of solute transport in the unsaturated zone using HYDRUS-1D. TVVR12/5020. https://www.lunduniversity.lu.se/lup/publication/3051081 Search in Google Scholar

Shaikh, J., Yamsani, S. K., Sekharan, S., & Rakesh, R. R. (2019). Performance evaluation of 5TM sensor for real-time monitoring of volumetric water content in landfill cover system. Advances in Civil Engineering Materials, 8(1), 322–335. https://www.astm.org/acem20180091.html Search in Google Scholar

Šimunek, J., Sejna, M., & Van Genuchten, M. T. (1999). The HYDRUS-2d software package. International Ground Water Modeling Center, 251. https://www.pc-progress.com/Downloads/Pgm_Hydrus2D/HYDRUS2D.PDF Search in Google Scholar

Šimunek, J., Van Genuchten, M. T., & Šejna, M. (2012). HYDRUS: Model use, calibration, and validation. Transactions of the ASABE, 55(4), 1263–1274. https://elibrary.asabe.org/abstract.asp?aid=42239 Search in Google Scholar

Singh, V. P., & David. A. (2002). Mathematical modeling of watershed hydrology. Journal of hydrologic engineering, 7(4), 270–292. https://doi.org/10.1061/(ASCE)1084-0699(2002)7:4(270) Search in Google Scholar

Singh, V. P., & Woolhiser, D. A. (2002). Mathematical modeling of watershed hydrology. Journal of hydrologic engineering, 7(4), 270–292. https://doi.org/10.1061/(ASCE)1084-0699(2002)7:4(270) Search in Google Scholar

Spelman, D., Kinzli, K. D., & Kunberger, T. (2013). Calibration of the 10HS soil moisture sensor for southwest Florida agricultural soils. Journal of Irrigation and Drainage Engineering, 139(12), 965–971. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000647 Search in Google Scholar

Srivastava, P. K., Pandey, P. C., Petropoulos, G. P., Kourgialas, N. N., Pandey, V., & Singh, U. (2019). GIS and remote sensing aided information for soil moisture estimation: A comparative study of interpolation techniques. Resources, 8(2), 70. https://doi.org/10.3390/resources8020070 Search in Google Scholar

Tárník, A., & Igaz, D. (2015). Determination of plant available soil water storage in agricultural land of the Nitra River Catchment. Acta Horticulturae et Regiotecturae, 18(1), 16–19. https://doi.org/10.1515/ahr-2015-0004 Search in Google Scholar

Tárník, A., & Igaz, D. (2017). Validation of HYDRUS 1D model in selected catchment of Slovakia. Acta Horticulturae et Regiotecturae, 20(1), 24–27. https://doi.org/10.1515/ahr-2017-0006 Search in Google Scholar

Vereecken, H., Huisman, J. A., Pachepsky, Y., Montzka, C., Van Der Kruk, J., Bogena, H., ... & Vanderborght, J. (2014). On the spatio-temporal dynamics of soil moisture at the field scale. Journal of Hydrology, 516, 76–96. https://doi.org/10.1016/j.jhydrol.2013.11.061 Search in Google Scholar

Wang, J., Gong, S., Xu, D., Juan, S., & Mu, J. (2013). Numerical simulations and validation of water flow and heat transport in a subsurface drip irrigation system using HYDRUS‐2D. Irrigation and Drainage, 62(1), 97–106. https://doi.org/10.1002/ird.1699 Search in Google Scholar

Wösten, J. H. M., Lilly, A., Nemes, A., & Le Bas, C. (1999). Development and use of a database of hydraulic properties of European soils. Geoderma, 90(3–4), 169–185. https://doi.org/10.1016/S0016-7061(98)00132-3 Search in Google Scholar

eISSN:
1338-5259
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Industrial Chemistry, Green and Sustainable Technology