Cite

Betts, R. A., Alfieri, L., Bradshaw, C., Caesar, J., Feyen, L., Friedlingstein, P., Gohar, L., Koutroulis, A., Lewis, K., Morfopoulos, C., Papadimitriou, L., Richardson, K. J., Tsanis, I., & Wyser, K. (2018). Changes in climate extremes, fresh water availability and vulnerability to food insecurity projected at 1.5 °C and 2 °C global warming with a higher-resolution global climate model. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376(2119), 20160452. https://doi.org/10.1098/rsta.2016.045210.1098/rsta.2016.0452589782429610383 Search in Google Scholar

Brezianská, K., & Vitková, J. (2015). Analýza bezzrážkových období a ich vplyv na zásobu vody v pôde na Záhorskej nížine [Analyse of Periods Without Precipitation and their Influence on Soil Water Storage at Záhorská Lowland]. Acta Hydrologica Slovaca, 16 (TC1), 260–266. Search in Google Scholar

Buhairi, M. H. (2010). Analysis of monthly, seasonal and annual air temperature variability and trends in Taiz city – Republic of Yemen. Journal of Environmental Protection, 01(04), 401–409. https://doi.org/10.4236/jep.2010.1404610.4236/jep.2010.14046 Search in Google Scholar

Čimo, J., Aydin, E., Šinka, K., Tárník, A., Kišš, V., Halaj, P., Toková, L., & Kotuš, T. (2020). Change in the Length of the Vegetation Period of Tomato (Solanum lycopersicum L.), White Cabbage (Brassica oleracea L. var. capitata) and Carrot (Daucus carota L.) Due to Climate Change in Slovakia. Agronomy-Basel, 10(8). https://doi.org/10.3390/agronomy1008111010.3390/agronomy10081110 Search in Google Scholar

Čimo, J., Kotuš, T., Kišš, V., & Shaikh, J. (2021). Evaluating manifestations in climate change of Danube lowland in Slovakia. 21st International Multidisciplinary Scientific GeoConference SGEM 2021 (pp. 277–284). https://doi.org/10.5593/sgem2021/4.1/s19.4510.5593/sgem2021/4.1/s19.45 Search in Google Scholar

Eekhout, J. P., Hunink, J. E., Terink, W., & De Vente, J. (2018). Why increased extreme precipitation under climate change negatively affects water security. Hydrology and Earth System Sciences, 22(11), 5935–5946. https://doi.org/10.5194/hess-22-5935-201810.5194/hess-22-5935-2018 Search in Google Scholar

European state of the climate 2020. (2021, April 18). Copernicus. https://climate.copernicus.eu/ESOTC/2020 Search in Google Scholar

Fendeková, M., Gauster, T., Labudová, L., Vrablíková, D., Danáčová, Z., Fendek, M., & Pekárová, P. (2018). Analysing 21st century meteorological and hydrological drought events in Slovakia. Journal of Hydrology and Hydromechanics, 66(4), 393–403. https://doi.org/10.2478/johh-2018-002610.2478/johh-2018-0026 Search in Google Scholar

Gocic, M., & Trajkovic, S. (2013). Analysis of changes in meteorological variables using Mann-Kendall and sen‘s slope estimator statistical tests in Serbia. Global and Planetary Change, 100, 172–182. https://doi.org/10.1016/j.gloplacha.2012.10.01410.1016/j.gloplacha.2012.10.014 Search in Google Scholar

Hamed, K. H. (2008). Trend detection in hydrologic data: The Mann-Kendall trend test under the scaling hypothesis. Journal of Hydrology, 349(3–4), 350–363. https://doi.org/10.1016/j.jhydrol.2007.11.00910.1016/j.jhydrol.2007.11.009 Search in Google Scholar

Karpouzos, D. K., Kavalieratou, S., & Babajimopoulos, C. (2010). Trend Analysis of Precipitation Data in Pieria Region (Greece). European Water, 30, 31–40. Search in Google Scholar

Kendall, M. G. (1975). Rank correlation methods: 10 tab. Search in Google Scholar

Kim, S., Sharma, A., Wasko, C., & Nathan, R. (2022). Linking total precipitable water to precipitation extremes globally. Earth‘s Future, 10(2). https://doi.org/10.1029/2021ef00247310.1029/2021EF002473 Search in Google Scholar

Kišš, V., Pagáč, J., Čimo, J., & Tárník, A. (2022). Visualisation of changes in vegetation periods due to climate change in Slovakia and their predictions for the period 2050, 2080 and 2110. In Ecological and environmental engineering: 3rd international scientific conference, 28 June–1 July 2022, Poznań : Book of abstracts. Search in Google Scholar

Koutroulis, A., Papadimitriou, L., Grillakis, M., Tsanis, I., Wyser, K., & Betts, R. (2018). Freshwater vulnerability under high end climate change. A pan-European assessment. Science of The Total Environment, 613–614, 271–286. https://doi.org/10.1016/j.scitotenv.2017.09.07410.1016/j.scitotenv.2017.09.07428915463 Search in Google Scholar

Kundzewicz, Z., Radziejewski, M., & Pínskwar, I. (2006). Precipitation extremes in the changing climate of Europe. Climate Research, 31, 51–58. https://doi.org/10.3354/cr03105110.3354/cr031051 Search in Google Scholar

Kunkel, K. E., Andsager, K., & Easterling, D. R. (1999). Long-term trends in extreme precipitation events over the conterminous United States and Canada. Journal of Climate, 12(8), 2515–2527. https://doi.org/10.1175/1520-0442(1999)012<2515:lttiep>2.0.co;210.1175/1520-0442(1999)012<2515:LTTIEP>2.0.CO;2 Search in Google Scholar

Kunkel, K. E., Easterling, D. R., Redmond, K., & Hubbard, K. (2003). Temporal variations of extreme precipitation events in the United States: 1895–2000. Geophysical Research Letters, 30(17), 5-1–5-4. https://doi.org/10.1029/2003gl01805210.1029/2003GL018052 Search in Google Scholar

Lapin, M., Faško, P., Melo, M., Šťastný, P., & Tomlain, J. (2002). Klimatické oblasti [Climatic regions]. In Atlas krajiny Slovenskej republiky. Bratislava: MŽP SR. Search in Google Scholar

Libiseller, C., & Grimvall, A. (2002). Performance of partial Mann-Kendall tests for trend detection in the presence of covariates. Environmetrics, 13(1), 71–84. https://doi.org/10.1002/env.50710.1002/env.507 Search in Google Scholar

Malhi, G. S., Kaur, M., & Kaushik, P. (2021). Impact of climate change on agriculture and its mitigation strategies: A review. Sustainability, 13(3), 1318. https://doi.org/10.3390/su1303131810.3390/su13031318 Search in Google Scholar

Mann, H. B. (1945). Nonparametric tests against trend. Econometrica, 13(3), 245. https://doi.org/10.2307/190718710.2307/1907187 Search in Google Scholar

Markovič, L., Pecho, J., & Faško, P. (2020). Zmeny v skupenskom zastúpení atmosférických zrážok v zime na území Slovenska [Changes in phase of precipitation during winter in Slovakia]. Meteorologické zprávy, 73. Search in Google Scholar

Mukherjee, S., Aadhar, S., Stone, D., & Mishra, V. (2018). Increase in extreme precipitation events under anthropogenic warming in India. Weather and Climate Extremes, 20, 45–53. https://doi.org/10.1016/j.wace.2018.03.00510.1016/j.wace.2018.03.005 Search in Google Scholar

Najvyšší kontrolný úrad (2021). Správa o výsledku kontroly Pripravenosť Slovenskej republiky na dopady sucha [Report on the result of the inspection Preparedness of the Slovak Republic for the effects of drought]. Search in Google Scholar

Önöz, B., & Bayazit, M. (2012). Block bootstrap for Mann-Kendall trend test of serially dependent data. Hydrological Processes, 26(23), 3552–3560. https://doi.org/10.1002/hyp.843810.1002/hyp.8438 Search in Google Scholar

Riedel, T., & Weber, T. K. (2020). Review: The influence of global change on Europe’s water cycle and groundwater recharge. Hydrogeology Journal, 28(6), 1939–1959. https://doi.org/10.1007/s10040-020-02165-310.1007/s10040-020-02165-3 Search in Google Scholar

Šefčík, P., Maglay, J., Fordinál, K., & Moravcová, M. (2019). Pôdy Podunajskej roviny a ich vývoj v kvartéri [Soils of the Danube Plain and their development in the Post-Tertiary]. Otevřený kongres české geologické společnosti a Slovenskej geologickej spoločnosti, Beroun. 67. Search in Google Scholar

Sen, P. K. (1968). Estimates of the regression coefficient based on Kendall‘s tau. Journal of the American Statistical Association, 63(324), 1379–1389. https://doi.org/10.1080/01621459.1968.1048093410.1080/01621459.1968.10480934 Search in Google Scholar

Slovenský hydrometeorologický ústav (2022). Klimatické pomery Slovenskej republiky [Climatic conditions of the Slovak Republic]. https://www.shmu.sk/sk/?page=1064 Search in Google Scholar

Sobocká, J. (2005). Klimatická zmena a jej možné dopady na pôdny fond Slovenska [Climate change and its possible impacts on the soil of Slovakia]. Search in Google Scholar

Šurda, P., Vitková, J., & Rončák, P. (2020). Regional drought assessment based on the meteorological indices. Bulletin of the Georgian National Academy of Sciences, 14(2), 9–84. Search in Google Scholar

Šútor, J., Šurda, P., & Štekauerová, V. (2011). Vplyv bezzrážkových období na dynamiku zásob vody v zone aerácie pôdy [Effect of the Time Periods Without Precipitation on Water Storage Dynamics in the Aeration Zone of the Soil]. Acta Hydrologica Slovaca, 12, (1), 22–28. Search in Google Scholar

Vido, J., & Nalevanková, P. (2020). Drought in the upper Hron region (Slovakia) between the years 1984–2014. Water, 12(10), 2887. https://doi.org/10.3390/w1210288710.3390/w12102887 Search in Google Scholar

Wang, Y. (2005). Observed trends in extreme precipitation events in China during 1961–2001 and the associated changes in large-scale circulation. Geophysical Research Letters, 32(9). https://doi.org/10.1029/2005gl02257410.1029/2005GL022574 Search in Google Scholar

World Meteorological Organization. (1992). International Meteorological Vocabulary. Search in Google Scholar

Zeleňáková, M., & Fendeková, M. (2018). Climate Change Impacts on Water Resources. In Negm, A. M., & Zeleňáková, M. (2018). Water resources in Slovakia: Part II: Climate change, drought and floods. https://doi.org/10.1007/698_2018_26810.1007/698_2018_268 Search in Google Scholar

Zeleňáková, M., Vido, J., Portela, M. M., Purcz, P. Blištán, P., Hlavatá, H., & Hluštík, P. (2017). Precipitation Trends over Slovakia in the Period 1981–2013. Water, 9(12), 922. https://doi.org/10.3390/w912092210.3390/w9120922 Search in Google Scholar

eISSN:
1338-5259
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Industrial Chemistry, Green and Sustainable Technology