Cite

Dutta J., Dutta P.K., Rinki K. i wsp.: Current research on chitin and chitosan for tissue engineering applications and future demands on bioproducts. W: Current Research and Developments on Chitin and Chitosan in Biomaterials Science, t.1, red.: R. Jayakumar, M. Prabaharan. Research Signpost, Palo Alto (CA) 2008, 167–186 DuttaJ. DuttaP.K. RinkiK. i wsp. Current research on chitin and chitosan for tissue engineering applications and future demands on bioproducts W: Current Research and Developments on Chitin and Chitosan in Biomaterials Science, t.1, red JayakumarR. PrabaharanM. Research Signpost Palo Alto (CA) 2008 167 186 Search in Google Scholar

Dutta P.K., Rinki K., Dutta J.: Chitosan: A promising biomaterial for tissue engineering scaffolds. Adv. Polymer Sci., 2011; 244: 45–79 DuttaP.K. RinkiK. DuttaJ. Chitosan: A promising biomaterial for tissue engineering scaffolds Adv. Polymer Sci 2011 244 45 79 10.1007/12_2011_112 Search in Google Scholar

Langer R., Vacanti J.P.: Tissue engineering. Science., 1993; 260: 920–926 LangerR. VacantiJ.P. Tissue engineering Science 1993 260 920 926 10.1201/9781420051834.sec1 Search in Google Scholar

Salgado A.J., Coutinho O.P., Rui L., Reis R.L.: Bone tissue engineering: State of the art and future trends. Macromol. Biosci., 2004; 4: 743–765 SalgadoA.J. CoutinhoO.P. RuiL. ReisR.L. Bone tissue engineering: State of the art and future trends Macromol. Biosci 2004 4 743 765 10.1002/mabi.20040002615468269 Search in Google Scholar

O’Brien M.P., Carnes M.E., Page R.L, Gaudette G.R., Pins G.D.: Designing biopolymer microthreads for tissue engineering and regenerative medicine. Current Stem Cell Rep., 2016; 2: 147–157 O’BrienM.P. CarnesM.E. PageR.L GaudetteG.R. PinsG.D. Designing biopolymer microthreads for tissue engineering and regenerative medicine Current Stem Cell Rep 2016 2 147 157 10.1007/s40778-016-0041-9501957227642550 Search in Google Scholar

Dolcimascolo A., Calabrese G., Conoci S., Parenti R.: Innovative biomaterials for tissue engineering. W: Biomaterial-Supported Tissue Reconstruction or Regeneration, red.: M. Barbeck, O. Jung, R. Smeets, T. Koržinskas. IntechOpen: Londyn 2019 DolcimascoloA. CalabreseG. ConociS. ParentiR. Innovative biomaterials for tissue engineering W: Biomaterial-Supported Tissue Reconstruction or Regeneration, red BarbeckM. JungO. SmeetsR. KoržinskasT. IntechOpen Londyn 2019 10.5772/intechopen.83839 Search in Google Scholar

Viana Ribeiro J.C., Vieira R.S., Melo I.M., Araújo V.M., Lima V.: Versatility of chitosan-based biomaterials and their use as scaffolds for tissue regeneration. Scient. World J., 2017; 2017: 8639898 Viana RibeiroJ.C. VieiraR.S. MeloI.M. AraújoV.M. LimaV. Versatility of chitosan-based biomaterials and their use as scaffolds for tissue regeneration Scient. World J 2017 2017 8639898 10.1155/2017/8639898 Search in Google Scholar

Huang Y., Onyeri S., Siewe M., Moshfeghian A., Madihally S.V.: In vitro characterization of chitosan-gelatin scaffolds for tissue engineering. Biomaterials, 2005; 26: 7616–7627 HuangY. OnyeriS. SieweM. MoshfeghianA. MadihallyS.V. In vitro characterization of chitosan-gelatin scaffolds for tissue engineering Biomaterials 2005 26 7616 7627 10.1016/j.biomaterials.2005.05.03616005510 Search in Google Scholar

Croisier F., Jérôme C.: Chitosan-based biomaterials for tissue engineering. Eur. Polym. J., 2013; 49: 780–792 CroisierF. JérômeC. Chitosan-based biomaterials for tissue engineering Eur. Polym. J 2013 49 780 792 10.1016/j.eurpolymj.2012.12.009 Search in Google Scholar

Islam M.M., Shahruzzaman M., Biswas S., Sakib M.N., Rashid T.U.: Chitosan based bioactive materials in tissue engineering applications – A review. Bioact. Mater., 2020; 5: 164–183 IslamM.M. ShahruzzamanM. BiswasS. SakibM.N. RashidT.U. Chitosan based bioactive materials in tissue engineering applications - A review Bioact. Mater 2020 5 164 183 10.1016/j.bioactmat.2020.01.012701635332083230 Search in Google Scholar

Aranaz I., Mengibar M., Harris R., Panos I., Miralles B., Acosta N., Galed G., Heras A.: Functional characterization of chitin and chitosan. Curr. Chem. Biol., 2009; 3: 203–230 AranazI. MengibarM. HarrisR. PanosI. MirallesB. AcostaN. GaledG. HerasA. Functional characterization of chitin and chitosan Curr. Chem. Biol 2009 3 203 230 10.2174/2212796810903020203 Search in Google Scholar

Al-Mamun A., Haque P., Debnath T., Rahman M.F., Islam J.M., Rahman M.M., Khan M.A.: γ-Irradiated gelatin and polyvinyl alcohol films as artificial articular cartilage. J. Thermoplast. Compos. Mater., 2018; 33: 614–627 Al-MamunA. HaqueP. DebnathT. RahmanM.F. IslamJ.M. RahmanM.M. KhanM.A. γ-Irradiated gelatin and polyvinyl alcohol films as artificial articular cartilage J. Thermoplast. Compos. Mater 2018 33 614 627 10.1177/0892705718808555 Search in Google Scholar

Doench I., Tran T.A., David L., Montembault A., Viguier E., Gorz-elanny C., Sudre G., Cachon T., Louback-Mohamed M., Horbelt N. i wsp.: Cellulose nanofiber-reinforced chitosan hydrogel composites for intervertebral disc tissue repair. Biomimetics, 2019; 4: 19 DoenchI. TranT.A. DavidL. MontembaultA. ViguierE. Gorz-elannyC. SudreG. CachonT. Louback-MohamedM. HorbeltN. i wsp. Cellulose nanofiber-reinforced chitosan hydrogel composites for intervertebral disc tissue repair Biomimetics 2019 4 19 10.3390/biomimetics4010019 Search in Google Scholar

Arun Kumar R., Sivashanmugam A., Deepthi S., Iseki S., Chennazhi K.P., Nair S.V, Jayakumar R.: Injectable chitin-poly (ε-caprolactone)/nanohydroxyapatite composite microgels prepared by simple regeneration technique for bone tissue engineering. ACS Appl. Mater. Interfaces, 2015; 7: 9399–9409 Arun KumarR. SivashanmugamA. DeepthiS. IsekiS. ChennazhiK.P. NairS.V JayakumarR. Injectable chitin-poly (ε-caprolactone)/nanohydroxyapatite composite microgels prepared by simple regeneration technique for bone tissue engineering. ACS Appl. Mater. Interfaces 2015 7 9399 9409 10.1021/acsami.5b02685 Search in Google Scholar

He P., Davis S.S., Illum L.: In vitro evaluation of the mucoad-hesive properties of chitosan microspheres. Int. J. Pharm., 1998; 166: 75–88 HeP. DavisS.S. IllumL. In vitro evaluation of the mucoad-hesive properties of chitosan microspheres Int. J. Pharm 1998 166 75 88 10.1016/S0378-5173(98)00027-1 Search in Google Scholar

Okamoto Y., Kawakami K., Miyatake K., Morimoto M., Shigemasa Y., Minami S.: Analgesic effects of chitin and chitosan. Carbohydr. Polym., 2002; 49: 249–252 OkamotoY. KawakamiK. MiyatakeK. MorimotoM. ShigemasaY. MinamiS. Analgesic effects of chitin and chitosan Carbohydr. Polym 2002 49 249 252 10.1016/S0144-8617(01)00316-2 Search in Google Scholar

Zhang H., Neau S.H.: In vitro degradation of chitosan by a commercial enzyme preparation: Effect of molecular weight and degree of deacetylation. Biomaterials, 2001; 22: 1653–1658 ZhangH. NeauS.H. In vitro degradation of chitosan by a commercial enzyme preparation: Effect of molecular weight and degree of deacetylation Biomaterials 2001 22 1653 1658 10.1016/S0142-9612(00)00326-4 Search in Google Scholar

Zhu X., Chian K.S., Chan-Park M.B., Lee S.T.: Effect of argon-plasma treatment on proliferation of human-skin-derived fibroblast on chitosan membrane in vitro. J. Biomed. Mater. Res. A, 2005; 73: 264–274 ZhuX. ChianK.S. Chan-ParkM.B. LeeS.T. Effect of argon-plasma treatment on proliferation of human-skin-derived fibroblast on chitosan membrane in vitro J. Biomed. Mater. Res. A 2005 73 264 274 10.1002/jbm.a.30211 Search in Google Scholar

Kean T., Thanou M.: Chitin and chitosan: Sources, production and medical applications. W: Renewable Resources for Functional Polymers and Biomaterials: Polysaccharides, Proteins and Polyesters, red.: P.A. Williams. RSC Publishing, London 2011, 292–318 KeanT. ThanouM. Chitin and chitosan: Sources, production and medical applications. W: Renewable Resources for Functional Polymers and Biomaterials: Polysaccharides Proteins and Polyesters, red WilliamsP.A. RSC Publishing London 2011 292 318 10.1039/9781849733519-00292 Search in Google Scholar

Pangburn S.H., Trescony P.V., Heller J.: Lysozyme degradation of partially deacetylated chitin, its films and hydrogels. Biomaterials., 1982; 3: 105–108 PangburnS.H. TresconyP.V. HellerJ. Lysozyme degradation of partially deacetylated chitin, its films and hydrogels Biomaterials 1982 3 105 108 10.1016/0142-9612(82)90043-6 Search in Google Scholar

Yang T.L.: Chitin-based materials in tissue engineering: Applications in soft tissue and epithelial organ. Int. J. Mol. Sci., 2011; 12: 1936–1963 YangT.L. Chitin-based materials in tissue engineering: Applications in soft tissue and epithelial organ Int. J. Mol. Sci 2011 12 1936 1963 10.3390/ijms12031936311164321673932 Search in Google Scholar

Laroche G., Marois Y., Guidoin R., King M.W., Martin L., How T., Douville Y.: Polyvinylidene fluoride (PVDF) as a biomaterial: From polymeric raw material to monofilament vascular suture. J. Biomed. Mater. Res., 1995; 29: 1525–1536 LarocheG. MaroisY. GuidoinR. KingM.W. MartinL. HowT. DouvilleY. Polyvinylidene fluoride (PVDF) as a biomaterial: From polymeric raw material to monofilament vascular suture. J Biomed. Mater. Res 1995 29 1525 1536 10.1002/jbm.8202912098600143 Search in Google Scholar

Shao H.J., Chen C.S., Lee Y.T., Wang J.H., Young T.H.: The phenotypic responses of human anterior cruciate ligament cells cultured on poly(epsilon-caprolactone) and chitosan. J. Biomed. Mater. Res. A, 2010; 93: 1297–1305 ShaoH.J. ChenC.S. LeeY.T. WangJ.H. YoungT.H. The phenotypic responses of human anterior cruciate ligament cells cultured on poly(epsilon-caprolactone) and chitosan J. Biomed. Mater. Res. A 2010 93 1297 1305 10.1002/jbm.a.32629 Search in Google Scholar

Shao H.J., Lee Y.T., Chen C.S., Wang J.H., Young T.H.: Modulation of gene expression and collagen production of anterior cruciate ligament cells through cell shape changes on polycaprolactone/chitosan blends. Biomaterials, 2010; 31: 4695–4705 ShaoH.J. LeeY.T. ChenC.S. WangJ.H. YoungT.H. Modulation of gene expression and collagen production of anterior cruciate ligament cells through cell shape changes on polycaprolac-tone/chitosan blends Biomaterials 2010 31 4695 4705 10.1016/j.biomaterials.2010.02.03720304482 Search in Google Scholar

Gupta V., Davis G., Gordon A., Altman A.M., Reece G.P., Gascoyne P.R., Mathur A.B.: Endothelial and stem cell interactions on dielectrophoretically aligned fibrous silk fibroin-chitosan scaffolds.J. Biomed. Mater. Res. A, 2010; 94: 515–523 GuptaV. DavisG. GordonA. AltmanA.M. ReeceG.P. GascoyneP.R. MathurA.B. Endothelial and stem cell interactions on dielectrophoretically aligned fibrous silk fibroin-chitosan scaffolds J. Biomed. Mater. Res. A 2010 94 515 523 10.1002/jbm.a.3272020186770 Search in Google Scholar

Choi J.S., Yoo H.S.: Pluronic/chitosan hydrogels containing epidermal growth factor with wound-adhesive and photo-crosslinkable properties. J. Biomed. Mater. Res. A, 2010; 95: 564–573 ChoiJ.S. YooH.S. Pluronic/chitosan hydrogels containing epidermal growth factor with wound-adhesive and photo-crosslinkable properties J. Biomed. Mater. Res. A 2010 95 564 573 10.1002/jbm.a.3284820725966 Search in Google Scholar

Masuoka K., Ishihara M., Asazuma T., Hattori H., Matsui T., Ta-kase B., Kanatani Y., Fujita M., Saito Y., Yura H., Fujikawa K., Nemoto K.: The interaction of chitosan with fibroblast growth factor-2 and its protection from inactivation. Biomaterials, 2005; 26: 3277–3284 MasuokaK. IshiharaM. AsazumaT. HattoriH. MatsuiT. Ta-kaseB. KanataniY. FujitaM. SaitoY. YuraH. FujikawaK. NemotoK. The interaction of chitosan with fibroblast growth fac-tor-2 and its protection from inactivation Biomaterials 2005 26 3277 3284 10.1016/j.biomaterials.2004.07.06115603823 Search in Google Scholar

Yang T.L., Young T.H.: Chitosan cooperates with mesenchyme-derived factors in regulating salivary gland epithelial morphogenesis. J. Cell. Mol. Med., 2009; 13: 2853–2863 YangT.L. YoungT.H. Chitosan cooperates with mesenchyme-derived factors in regulating salivary gland epithelial morphogenesis J. Cell. Mol. Med 2009 13 2853 2863 10.1111/j.1582-4934.2008.00425.x449894118627424 Search in Google Scholar

Kojima K., Okamoto Y., Miyatake K., Fujise H., Shigemasa Y., Minami S.: Effects of chitin and chitosan on collagen synthesis in wound healing. J. Vet. Med. Sci., 2004; 66: 1595–1598 KojimaK. OkamotoY. MiyatakeK. FujiseH. ShigemasaY. MinamiS. Effects of chitin and chitosan on collagen synthesis in wound healing J. Vet. Med. Sci 2004 66 1595 1598 10.1292/jvms.66.159515644615 Search in Google Scholar

Yang T.L., Young T.H.: The enhancement of submandibular gland branch formation on chitosan membranes. Biomaterials, 2008; 29: 2501–2508 YangT.L. YoungT.H. The enhancement of submandibular gland branch formation on chitosan membranes Biomaterials 2008 29 2501 2508 10.1016/j.biomaterials.2008.02.01418316118 Search in Google Scholar

Liu X., Ma L., Mao Z., Gao C.: Chitosan-based biomaterials for tissue repair and regeneration. Adv. Polym. Sci., 2011; 244: 81–127 LiuX. MaL. MaoZ. GaoC. Chitosan-based biomaterials for tissue repair and regeneration Adv. Polym. Sci 2011 244 81 127 10.1007/12_2011_118 Search in Google Scholar

Zhu C., Fan D., Duan Z., Xue W., Shang L., Chen F., Luo Y.: Initial investigation of novel human-like collagen/chitosan scaffold for vascular tissue engineering. J. Biomed. Mater. Res. A, 2009; 89: 829–840 ZhuC. FanD. DuanZ. XueW. ShangL. ChenF. LuoY. Initial investigation of novel human-like collagen/chitosan scaffold for vascular tissue engineering J. Biomed. Mater. Res. A 2009 89 829 840 10.1002/jbm.a.3225619165794 Search in Google Scholar

Jagur-Grodzinski J.: Biomedical applications of polymers 2001 – 2002. e-Polymers, 2003; 12: 012 Jagur-GrodzinskiJ. Biomedical applications of polymers 2001 - 2002 e-Polymers 2003 12 012 10.1515/epoly.2003.3.1.141 Search in Google Scholar

Venkatesan J., Jayakumar R., Anil S., Chalisserry E.P., Pallela R., Kim S.K.: Development of alginate-chitosan-collagen based hydrogels for tissue engineering. J. Biomater. Tissue Eng., 2015; 5: 458–464 VenkatesanJ. JayakumarR. AnilS. ChalisserryE.P. PallelaR. KimS.K. Development of alginate-chitosan-collagen based hydrogels for tissue engineering J. Biomater. Tissue Eng 2015 5 458 464 10.1166/jbt.2015.1338 Search in Google Scholar

Drury J.L., Mooney D.J.: Hydrogels for tissue engineering: Scaffold design variables and applications. Biomaterials, 2003; 24: 4337–4351 DruryJ.L. MooneyD.J. Hydrogels for tissue engineering: Scaffold design variables and applications Biomaterials 2003 24 4337 4351 10.1016/S0142-9612(03)00340-5 Search in Google Scholar

Shariatinia Z., Jalali A.M.: Chitosan-based hydrogels: Preparation, properties and applications. Int. J. Biol. Macromol., 2018; 115: 194–220 ShariatiniaZ. JalaliA.M. Chitosan-based hydrogels: Preparation, properties and applications Int. J. Biol. Macromol 2018 115 194 220 10.1016/j.ijbiomac.2018.04.034 Search in Google Scholar

Boucard N., Viton C., Domard A.: New aspects of the formation of physical hydrogels of chitosan in a hydroalcoholic medium. Biomacromolecules, 2005; 6: 3227–3237 BoucardN. VitonC. DomardA. New aspects of the formation of physical hydrogels of chitosan in a hydroalcoholic medium Biomacromolecules 2005 6 3227 3237 10.1021/bm050653d Search in Google Scholar

Berger J., Reist M., Mayer J.M., Felt O., Gurny R.: Structure and interactions in chitosan hydrogels formed by complexation or aggregation for biomedical applications. Eur. J. Pharm. Biopharm., 2004; 57: 35–52 BergerJ. ReistM. MayerJ.M. FeltO. GurnyR. Structure and interactions in chitosan hydrogels formed by complexation or aggregation for biomedical applications Eur. J. Pharm. Biopharm 2004 57 35 52 10.1016/S0939-6411(03)00160-7 Search in Google Scholar

Bhattarai N., Ramay H.R., Gunn J., Matsen F.A., Zhang M.: PEG-grafted chitosan as an injectable thermosensitive hydrogel for sustained protein release. J. Control. Release, 2005; 103: 609–624 BhattaraiN. RamayH.R. GunnJ. MatsenF.A. ZhangM. PEG-grafted chitosan as an injectable thermosensitive hydrogel for sustained protein release J. Control. Release 2005 103 609 624 10.1016/j.jconrel.2004.12.019 Search in Google Scholar

Peppas N.: Hydrogels in Medicine and Pharmacy, Volume 1. Fundamentals. CRC Press, Boca Raton 2019 PeppasN. Hydrogels in Medicine and Pharmacy Volume 1 Fundamentals CRC Press Boca Raton 2019 10.1201/9780429285097-1 Search in Google Scholar

Hennink W.E., van Nostrum C.F.: Novel crosslinking methods to design hydrogels. Adv. Drug. Deliv. Rev., 2002; 54: 13–36 HenninkW.E. van NostrumC.F. Novel crosslinking methods to design hydrogels Adv. Drug. Deliv. Rev 2002 54 13 36 10.1016/S0169-409X(01)00240-X Search in Google Scholar

Wu X., Black L., Santacana-Laffitte G., Patrick C.W.Jr.: Preparation and assessment of glutaraldehyde-crosslinked collagen-chi-tosan hydrogels for adipose tissue engineering. J. Biomed. Mater. Res. A, 2007; 81: 59–65 WuX. BlackL. Santacana-LaffitteG. PatrickC.W.Jr Preparation and assessment of glutaraldehyde-crosslinked collagen-chi-tosan hydrogels for adipose tissue engineering J. Biomed. Mater. Res. A 2007 81 59 65 10.1002/jbm.a.3100317109417 Search in Google Scholar

Dash M., Chiellini F., Ottenbrite R.M., Chiellini E.: Chitosan – a versatile semi-synthetic polymer in biomedical applications. Prog. Polym. Sci., 2011; 36: 981–1014 DashM. ChielliniF. OttenbriteR.M. ChielliniE. Chitosan - a versatile semi-synthetic polymer in biomedical applications Prog. Polym. Sci 2011 36 981 1014 10.1016/j.progpolymsci.2011.02.001 Search in Google Scholar

Djerassi C., Gray J.D., Kincl F.A.: Naturally occurring oxygen heterocyclics. IX. Isolation and characterization of genipin. J. Org. Chem., 1960; 25: 2174–2177 DjerassiC. GrayJ.D. KinclF.A. Naturally occurring oxygen heterocyclics IX. Isolation and characterization of genipin. J. Org. Chem 1960 25 2174 2177 10.1021/jo01082a022 Search in Google Scholar

Leung H.W.: Ecotoxicology of glutaraldehyde: Review of environmental fate and effects studies. Ecotoxicol. Environ. Saf., 2001;49:26–39 LeungH.W. Ecotoxicology of glutaraldehyde: Review of environmental fate and effects studies Ecotoxicol. Environ. Saf 2001 49 26 39 10.1006/eesa.2000.203111386713 Search in Google Scholar

Jayakumar R., Prabaharan M., Sudheesh Kumar P.T., Nair S.V., Tamura H.: Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol. Adv., 2011; 29: 322–337 JayakumarR. PrabaharanM. Sudheesh KumarP.T. NairS.V. TamuraH. Biomaterials based on chitin and chitosan in wound dressing applications Biotechnol. Adv 2011 29 322 337 10.1016/j.biotechadv.2011.01.00521262336 Search in Google Scholar

Arpornmaeklong P, Pripatnanont P., Suwatwirote N.: Properties of chitosan-collagen sponges and osteogenic differentiation of rat-bone-marrow stromal cells. Int. J. Oral Maxillofac. Surg., 2008; 37: 357–366 ArpornmaeklongP. PripatnanontP. SuwatwiroteN. Properties of chitosan-collagen sponges and osteogenic differentiation of rat bone-marrow stromal cells Int. J. Oral Maxillofac. Surg 2008 37 357 366 10.1016/j.ijom.2007.11.01418272341 Search in Google Scholar

Costa-Pinto A.R., Reis R.L., Neves N.M.: Scaffolds based bone tissue engineering: The role of chitosan. Tissue Eng. Part B. Rev., 2011; 17: 331–347 Costa-PintoA.R. ReisR.L. NevesN.M. Scaffolds based bone tissue engineering: The role of chitosan Tissue Eng. Part B. Rev 2011 17 331 347 10.1089/ten.teb.2010.070421810029 Search in Google Scholar

Denkbaş E.B., Oztürk E., Ozdemir N., Keçeci K., Agalar C.: Norfloxacin loaded chitosan sponges as wound dressing material. J. Biomater. Appl. 2004; 18: 291–303 DenkbaşE.B. OztürkE. OzdemirN. KeçeciK. AgalarC. Norfloxacin loaded chitosan sponges as wound dressing material J. Biomater. Appl 2004 18 291 303 10.1177/088532820404151015070516 Search in Google Scholar

Skołucka-Szary K., Rieske P, Piaskowski S.: Praktyczne aspekty zastosowania chityny i jej pochodnych w leczeniu ran. Chemik, 2016; 70: 89–98 Skołucka-SzaryK. RieskeP. PiaskowskiS. Praktyczne aspekty zastosowania chityny i jej pochodnych w leczeniu ran Chemik 2016 70 89 98 Search in Google Scholar

Clasen C., Wilhelms T., Kulicke W.M.: Formation and characterization of chitosan membranes. Biomacromolecules, 2006; 7: 3210–3222 ClasenC. WilhelmsT. KulickeW.M. Formation and characterization of chitosan membranes Biomacromolecules 2006 7 3210 3222 10.1021/bm060486x17096553 Search in Google Scholar

Matienzo L.J., Winnacker S.K.: Dry processes for surface modification of a biopolymer: Chitosan. Macromol. Mater. Eng., 2002; 287: 871–880 MatienzoL.J. WinnackerS.K. Dry processes for surface modification of a biopolymer: Chitosan Macromol. Mater. Eng 2002 287 871 880 10.1002/mame.200290022 Search in Google Scholar

Silva S.S., Luna S.M., Gomes M.E., Benesch J., Pashkuleva I., Mano J.F., Reis R.L.: Plasma surface modification of chitosan membranes: Characterization and preliminary cell response studies. Macromol. Biosci., 2008; 8: 568–576 SilvaS.S. LunaS.M. GomesM.E. BeneschJ. PashkulevaI. ManoJ.F. ReisR.L. Plasma surface modification of chitosan membranes: Characterization and preliminary cell response studies Macromol. Biosci 2008 8 568 576 10.1002/mabi.20070026418350539 Search in Google Scholar

Kolhe P., Kannan R.M.: Improvement in ductility of chitosan through blending and copolymerization with PEG: FTIR investigation of molecular interactions. Biomacromolecules, 2003; 4: 173–180 KolheP. KannanR.M. Improvement in ductility of chitosan through blending and copolymerization with PEG: FTIR investigation of molecular interactions Biomacromolecules 2003 4 173 180 10.1021/bm025689+12523863 Search in Google Scholar

Zotkin M.A., Vikhoreva G., Kechek’yan A.S.: Thermal modification of chitosan films in the form of salts with various acids. Polym. Sci., Ser. B, 2004; 46: 359–363 ZotkinM.A. VikhorevaG. Kechek’yanA.S. Thermal modification of chitosan films in the form of salts with various acids Polym. Sci., Ser. B 2004 46 359 363 Search in Google Scholar

Tang R., Du Y., Fan L.: Dialdehyde starch-crosslinked chitosan films and their antimicrobial effects. J. Polym. Sci. Part. B Polym. Phys., 2003; 41: 993–997 TangR. DuY. FanL. Dialdehyde starch-crosslinked chitosan films and their antimicrobial effects J. Polym. Sci. Part. B Polym. Phys 2003 41 993 997 10.1002/polb.10405 Search in Google Scholar

Aoyagi S., Onishi H., Machida Y.: Novel chitosan wound dressing loaded with minocycline for the treatment of severe burn wounds. Int. J. Pharm., 2007; 330: 138–145 AoyagiS. OnishiH. MachidaY. Novel chitosan wound dressing loaded with minocycline for the treatment of severe burn wounds Int. J. Pharm 2007 330 138 145 10.1016/j.ijpharm.2006.09.01617049772 Search in Google Scholar

Wan Y., Creber K.A.M., Peppley B., Bui V.T.: Synthesis, characterization and ionic conductive properties of phosphorylated chitosan membranes. Macromol. Chem. Phys., 2003; 204: 850–858 WanY. CreberK.A.M. PeppleyB. BuiV.T. Synthesis, characterization and ionic conductive properties of phosphorylated chitosan membranes Macromol. Chem. Phys 2003 204 850 858 10.1002/macp.200390056 Search in Google Scholar

Cohen M.L.: The theory of real materials. Ann. Rev. Mater. Sci., 2000; 30: 1–26 CohenM.L. The theory of real materials Ann. Rev. Mater. Sci 2000 30 1 26 10.1146/annurev.matsci.30.1.1 Search in Google Scholar

Tangpasuthadol V., Pongchaisirikul N., Hoven V.P.: Surface modification of chitosan films. Effects of hydrophobicity on protein adsorption. Carbohydr. Res., 2003; 338: 937–942 TangpasuthadolV. PongchaisirikulN. HovenV.P. Surface modification of chitosan films Effects of hydrophobicity on protein adsorption. Carbohydr. Res 2003 338 937 942 10.1016/S0008-6215(03)00038-7 Search in Google Scholar

Agboh O.C., Qin Y.: Chitin and chitosan fibers. Polym. Adv. Tech-nol., 1997; 8: 355–365 AgbohO.C. QinY. Chitin and chitosan fibers Polym. Adv. Tech-nol 1997 8 355 365 10.1002/(SICI)1099-1581(199706)8:6<355::AID-PAT651>3.0.CO;2-T Search in Google Scholar

Pillai C.K., Paul W., Sharma C.P.: Chitin and chitosan polymers: Chemistry, solubility and fiber formation. Prog. Polym. Sci., 2009; 34: 641–678 PillaiC.K. PaulW. SharmaC.P. Chitin and chitosan polymers: Chemistry, solubility and fiber formation Prog. Polym. Sci 2009 34 641 678 10.1016/j.progpolymsci.2009.04.001 Search in Google Scholar

Hirano S., Zhang M., Nakagawa M., Miyata T.: Wet spun chi-tosan-collagen fibers, their chemical-N-modifications, and blond compatibility. Biomaterials, 2000; 21: 997–1003 HiranoS. ZhangM. NakagawaM. MiyataT. Wet spun chi-tosan-collagen fibers, their chemical-N-modifications, and blond compatibility Biomaterials 2000 21 997 1003 10.1016/S0142-9612(99)00258-6 Search in Google Scholar

Tamura H., Tsuruta Y., Tokura S.: Preparation of chitosan-coated alginate filament. Mater. Sci. Eng. C, 2002; 20: 143–147 TamuraH. TsurutaY. TokuraS. Preparation of chitosan-coated alginate filament Mater. Sci. Eng. C 2002 20 143 147 10.1016/S0928-4931(02)00024-3 Search in Google Scholar

Jayakumar R., Prabaharan M., Nair S.V., Tamura H.: Novel chitin and chitosan nanofibers in biomedical applications. Biotechnol. Adv., 2010; 28: 142–150 JayakumarR. PrabaharanM. NairS.V. TamuraH. Novel chitin and chitosan nanofibers in biomedical applications Biotechnol. Adv 2010 28 142 150 10.1016/j.biotechadv.2009.11.001 Search in Google Scholar

Bhattarai N., Edmondson D., Veiseh O., Matsen F.A., Zhang M.: Electrospun chitosan-based nanofibers and their cellular compatibility. Biomaterials, 2005; 26: 6176–6184 BhattaraiN. EdmondsonD. VeisehO. MatsenF.A. ZhangM. Electrospun chitosan-based nanofibers and their cellular compatibility Biomaterials 2005 26 6176 6184 10.1016/j.biomaterials.2005.03.027 Search in Google Scholar

Kim I.Y., Seo S.J., Moon H.S. Yoo M.K., Park I.Y., Kim B.C., Cho C.S.: Chitosan and its derivatives for tissue engineering applications. Biotechnol. Adv., 2008; 26: 1–21 KimI.Y. SeoS.J. MoonH.S. YooM.K. ParkI.Y. KimB.C. ChoC.S. Chitosan and its derivatives for tissue engineering applications Biotechnol. Adv 2008 26 1 21 10.1016/j.biotechadv.2007.07.009 Search in Google Scholar

Sultankulov B., Berillo D., Sultankulova K., Tokay T., Saparov A.: Progress in the development of chitosan-based biomaterials for tissue engineering and regenerative medicine. Biomolecules, 2019; 9: 470 SultankulovB. BerilloD. SultankulovaK. TokayT. SaparovA. Progress in the development of chitosan-based biomaterials for tissue engineering and regenerative medicine Biomolecules 2019 9 470 10.3390/biom9090470 Search in Google Scholar

Suh J.K., Matthew H.W.: Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: A review. Biomaterials, 2000; 21: 2589–2598 SuhJ.K. MatthewH.W. Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: A review Biomaterials 2000 21 2589 2598 10.1016/S0142-9612(00)00126-5 Search in Google Scholar

Rodríguez-Vázquez M., Vega-Ruiz B., Ramos-Zúñiga R., Saldaña-Koppel D.A., Quiñones-Olvera L.F.: Chitosan and its potential use as a scaffold for tissue engineering in regenerative medicine.BioMed Res. Int., 2015; 2015: 821279 Rodríguez-VázquezM. Vega-RuizB. Ramos-ZúñigaR. Saldaña-KoppelD.A. Quiñones-OlveraL.F. Chitosan and its potential use as a scaffold for tissue engineering in regenerative medicine BioMed Res. Int 2015 2015 821279 10.1155/2015/821279460939326504833 Search in Google Scholar

Anitha A., Sowmya S., Kumar P.T.S., Deepthi S., Chennazhi K.P., Ehrlich H., Tsurkan M., Jayakumar R.: Chitin and chitosan in selected biomedical applications. Prog. Polym. Sci., 2014; 39: 1644–1667 AnithaA. SowmyaS. KumarP.T.S. DeepthiS. ChennazhiK.P. EhrlichH. TsurkanM. JayakumarR. Chitin and chitosan in selected biomedical applications Prog. Polym. Sci 2014 39 1644 1667 10.1016/j.progpolymsci.2014.02.008 Search in Google Scholar

Yoo D.: New paradigms in hierarchical porous scaffold design for tissue engineering. Mater. Sci. Eng. C Mater. Biol. Appl., 2013; 33: 1759–1772 YooD. New paradigms in hierarchical porous scaffold design for tissue engineering Mater. Sci. Eng. C Mater. Biol. Appl 2013 33 1759 1772 10.1016/j.msec.2012.12.09223827634 Search in Google Scholar

Nikolova M.P., Chavali M.S.: Recent advances in biomaterials for 3D scaffolds: A review. Bioactive Mater., 2019; 4: 271–292 NikolovaM.P. ChavaliM.S. Recent advances in biomaterials for 3D scaffolds: A review Bioactive Mater 2019 4 271 292 10.1016/j.bioactmat.2019.10.005682909831709311 Search in Google Scholar

Gu L.S., Cai X., Guo J.M., Pashley D.H., Breschi L., Xu H.H.K., Wang X.Y., Tay F.R., Niu L.N.: Chitosan-based extrafibrillar demineralization for dentin bonding. J. Dent. Res., 2019; 98: 186–193 GuL.S. CaiX. GuoJ.M. PashleyD.H. BreschiL. XuH.H.K. WangX.Y. TayF.R. NiuL.N. Chitosan-based extrafibrillar demineralization for dentin bonding J. Dent. Res 2019 98 186 193 10.1177/002203451880541930326766 Search in Google Scholar

Grobler S., Perchyonok V., Mulder R., Moodley D.: Towards bioactive dental restorative materials with chitosan and nanodiamonds: Evaluation and application. Int. J. Dentistry Oral Sci., 2015; 2: 147–154 GroblerS. PerchyonokV. MulderR. MoodleyD. Towards bioactive dental restorative materials with chitosan and nanodiamonds: Evaluation and application Int. J. Dentistry Oral Sci 2015 2 147 154 10.19070/2377-8075-1500031 Search in Google Scholar

Park K.H., Kim S.J., Hwang M.J, Song H.J, Park Y.J.: Pulse electrodeposition of hydroxyapatite/chitosan coatings on titanium substrate for dental implant. Colloid Polym. Sci., 2017; 295: 1843–1849 ParkK.H. KimS.J. HwangM.J SongH.J ParkY.J. Pulse electrodeposition of hydroxyapatite/chitosan coatings on titanium substrate for dental implant Colloid Polym. Sci 2017 295 1843 1849 10.1007/s00396-017-4166-x Search in Google Scholar

Mota J., Yu N., Caridade S.G., Luz G.M., Gomes M.E., Reis R.L., Jansen J.A., Walboomers X.F., Mano J.F.: Chitosan/bioactive glass nanoparticle composite membranes for periodontal regeneration. Acta Biomater., 2012; 8: 4173–4180 MotaJ. YuN. CaridadeS.G. LuzG.M. GomesM.E. ReisR.L. JansenJ.A. WalboomersX.F. ManoJ.F. Chitosan/bioactive glass nanoparticle composite membranes for periodontal regeneration Acta Biomater 2012 8 4173 4180 10.1016/j.actbio.2012.06.04022771458 Search in Google Scholar

Peng L., Cheng X., Zhuo R., Lan J., Wang Y., Shi B., Li S.: Novel gene-activated matrix with embedded chitosan/plasmid DNA nanoparticles encoding PDGF for periodontal tissue engineering. Biomed. Mater. Res. Part A, 2009; 90: 564–576 PengL. ChengX. ZhuoR. LanJ. WangY. ShiB. LiS. Novel gene-activated matrix with embedded chitosan/plasmid DNA nanoparticles encoding PDGF for periodontal tissue engineering Biomed. Mater. Res. Part A 2009 90 564 576 10.1002/jbm.a.3211718563823 Search in Google Scholar

Malafaya P.B., Santos T.C., van Griensven M., Reis R.L.: Morphology, mechanical characterization and in vivo neo-vasculariza-tion of chitosan particle aggregated scaffolds architectures. Biomaterials, 2008; 29: 3914–3926 MalafayaP.B. SantosT.C. van GriensvenM. ReisR.L. Morphology, mechanical characterization and in vivo neo-vasculariza-tion of chitosan particle aggregated scaffolds architectures Biomaterials 2008 29 3914 3926 10.1016/j.biomaterials.2008.06.02318649938 Search in Google Scholar

Nosrati H., Pourmotabed S., Sharifi E.: A review on some natural biopolymers and their applications in angiogenesis and tissue engineering. J. Appl. Biotech. Rep., 2018; 5: 81–91 NosratiH. PourmotabedS. SharifiE. A review on some natural biopolymers and their applications in angiogenesis and tissue engineering J. Appl. Biotech. Rep 2018 5 81 91 10.29252/JABR.05.03.01 Search in Google Scholar

Ishihara M., Obara K., Nakamura S., Fujita M., Masuoka K., Kanatani Y., Takase B., Hattori H., Morimoto Y., Ishihara M., Maehara T., Kikuchi M.: Chitosan hydrogel as a drug delivery carrier to control angiogenesis. J. Artif. Organs., 2006; 9: 8–16 IshiharaM. ObaraK. NakamuraS. FujitaM. MasuokaK. KanataniY. TakaseB. HattoriH. MorimotoY. IshiharaM. Mae-haraT. KikuchiM. Chitosan hydrogel as a drug delivery carrier to control angiogenesis J. Artif. Organs 2006 9 8 16 10.1007/s10047-005-0313-016614797 Search in Google Scholar

Fiqrianti I., Widiyanti P., Manaf M.A., Savira C.Y., Cahyani N.R., Bella F.R.: Poly-L-lactic acid (PLLA)-chitosan-collagen electrospun tube for vascular graft application. J. Funct. Biomater., 2018; 9: 32 FiqriantiI. WidiyantiP. ManafM.A. SaviraC.Y. CahyaniN.R. BellaF.R. Poly-L-lactic acid (PLLA)-chitosan-collagen electrospun tube for vascular graft application J. Funct. Biomater 2018 9 32 10.3390/jfb9020032602352929710843 Search in Google Scholar

Kędzierska M., Miłowska K.: Zastosowanie biomateriałów na ba-zie chitozanu w leczeniu trudno gojących się ran. Postępy Hig. Med. Dośw., 2019; 73: 768–781 KędzierskaM. MiłowskaK. Zastosowanie biomateriałów na ba-zie chitozanu w leczeniu trudno gojących się ran Postępy Hig. Med. Dośw 2019 73 768 781 10.5604/01.3001.0013.6823 Search in Google Scholar

Lu T.J., Chiu F.Y., Chiu H.Y., Chang M.C., Hung S.C.: Chondro-genic differentiation of mesenchymal stem cells in three-dimensional chitosan film culture. Cell Transplant., 2017; 26: 417–427 LuT.J. ChiuF.Y. ChiuH.Y. ChangM.C. HungS.C. Chondro-genic differentiation of mesenchymal stem cells in three-dimensional chitosan film culture Cell Transplant 2017 26 417 427 10.3727/096368916X693464565769927737727 Search in Google Scholar

Hattori H., Ishihara M.: Changes in blood aggregation with differences in molecular weight and degree of deacetylation of chitosan. Biomed. Mater., 2015; 10: 014015 HattoriH. IshiharaM. Changes in blood aggregation with differences in molecular weight and degree of deacetylation of chitosan Biomed. Mater 2015 10 014015 10.1088/1748-6041/10/1/01501425611127 Search in Google Scholar

Hu Z., Lu S., Cheng Y., Kong S., Li S., Li C., Yang L.: Investigation of the effects of molecular parameters on the hemostatic properties of chitosan. Molecules., 2018; 23: 3147 HuZ. LuS. ChengY. KongS. LiS. LiC. YangL. Investigation of the effects of molecular parameters on the hemostatic properties of chitosan Molecules 2018 23 3147 10.3390/molecules23123147632109930513622 Search in Google Scholar

Zhou X., Zhang X., Zhou J., Li L.: An investigation of chitosan and its derivatives on red blood cell agglutination. RSC Adv., 2017; 7: 12247–12254 ZhouX. ZhangX. ZhouJ. LiL. An investigation of chitosan and its derivatives on red blood cell agglutination RSC Adv 2017 7 12247 12254 10.1039/C6RA27417J Search in Google Scholar

Shah A., Ali Buabeid M., Arafa E.A., Hussain I., Li L., Murtaza G.: The wound healing and antibacterial potential of triple-component nanocomposite (chitosan-silver-sericin) films loaded with moxi-floxacin. Int. J. Pharm., 2019; 564: 22–38 ShahA. Ali BuabeidM. ArafaE.A. HussainI. LiL. MurtazaG. The wound healing and antibacterial potential of triple-component nanocomposite (chitosan-silver-sericin) films loaded with moxi-floxacin Int. J. Pharm 2019 564 22 38 10.1016/j.ijpharm.2019.04.04631002933 Search in Google Scholar

Kucharska M., Struszczyk M.H., Niekraszewicz A., Ciechańska D., Witczak E., Tarkowska S., Fortuniak K., Gulbas-Diaz A., Ro-gaczewska A., Płoszaj I., Pluta A., Gąsiorowski T.: Tromboguard® - first aid wound dressing. Prog. Chem. Appl. Chitin Its Deriv., 2011; 16: 121–130 KucharskaM. StruszczykM.H. NiekraszewiczA. CiechańskaD. WitczakE. TarkowskaS. FortuniakK. Gulbas-DiazA. Ro-gaczewskaA. PłoszajI. PlutaA. GąsiorowskiT. Tromboguard® - first aid wound dressing. Prog Chem. Appl. Chitin Its Deriv 2011 16 121 130 Search in Google Scholar

Shevchenko R.V., James S.L., James S.E.: A review of tissue-engineered skin bioconstructs available for skin reconstruction. J. R. Soc. Interface, 2010; 7: 229–258 ShevchenkoR.V. JamesS.L. JamesS.E. A review of tissue-engineered skin bioconstructs available for skin reconstruction J. R. Soc. Interface 2010 7 229 258 10.1098/rsif.2009.0403 Search in Google Scholar

Ma J., Wang H., He B., Chen J.: A preliminary in vitro study on the fabrication and tissue engineering applications of a novel chitosan bilayer material as a scaffold of human neofetal dermal fibroblasts. Biomaterials, 2001; 22: 331–336 MaJ. WangH. HeB. ChenJ. A preliminary in vitro study on the fabrication and tissue engineering applications of a novel chitosan bilayer material as a scaffold of human neofetal dermal fibroblasts Biomaterials 2001 22 331 336 10.1016/S0142-9612(00)00188-5 Search in Google Scholar

Friedman M., Ibrahim H., Ramakrishnan V.: Inferior turbinate flap for repair of nasal septal perforation. Laryngoscope, 2003; 113: 1425–1428 FriedmanM. IbrahimH. RamakrishnanV. Inferior turbinate flap for repair of nasal septal perforation Laryngoscope 2003 113 1425 1428 10.1097/00005537-200308000-0003112897571 Search in Google Scholar

Huang T.W., Young Y.H., Cheng P.W., Chan Y.H., Young T.H.: Culture of nasal epithelial cells using chitosan-based membranes. Laryngoscope, 2009; 119: 2066–2070 HuangT.W. YoungY.H. ChengP.W. ChanY.H. YoungT.H. Culture of nasal epithelial cells using chitosan-based membranes Laryngoscope 2009 119 2066 2070 10.1002/lary.2060919572267 Search in Google Scholar

Kinikoglu B., Auxenfans C., Pierrillas P., Justin V., Breton P., Burillon C., Hasirci V., Damour O.: Reconstruction of a full-thickness collagen-based human oral mucosal equivalent. Biomaterials, 2009; 30: 6418–6425 KinikogluB. AuxenfansC. PierrillasP. JustinV. BretonP. Bu-rillonC. HasirciV. DamourO. Reconstruction of a full-thickness collagen-based human oral mucosal equivalent Biomaterials 2009 30 6418 6425 10.1016/j.biomaterials.2009.08.01019698987 Search in Google Scholar

Wei C.Z., Hou C.L., Gu Q.S., Jiang L.X., Zhu B., Sheng A.L.: A thermosensitive chitosan-based hydrogel barrier for post-operative adhesions prevention. Biomaterials, 2009; 30: 5534–5540 WeiC.Z. HouC.L. GuQ.S. JiangL.X. ZhuB. ShengA.L. A thermosensitive chitosan-based hydrogel barrier for post-operative adhesions prevention Biomaterials 2009 30 5534 5540 10.1016/j.biomaterials.2009.05.08419647868 Search in Google Scholar

Wei C., Hou C., Gu Q., Jiang L., Zhu B., Sheng A.: Efficacy of thermosensitive hydroxybutyl chitosan in prevention of postoperative abdominal adhesions in a rat model. Iran. Polym. J., 2009; 18: 355–364 WeiC. HouC. GuQ. JiangL. ZhuB. ShengA. Efficacy of thermosensitive hydroxybutyl chitosan in prevention of postoperative abdominal adhesions in a rat model Iran. Polym. J 2009 18 355 364 Search in Google Scholar

Gobin A.S.,. Butler C.E., Mathur A.B.: Repair and regeneration of the abdominal wall musculofascial defect using silk fibroin-chito-san blend. Tissue Eng., 2006; 12: 3383–3394 GobinA.S. ButlerC.E. MathurA.B. Repair and regeneration of the abdominal wall musculofascial defect using silk fibroin-chito-san blend Tissue Eng 2006 12 3383 3394 10.1089/ten.2006.12.338317518675 Search in Google Scholar

Ławniczak P., Grobelski B., Pasieka Z.: Properties comparison of intraperitoneal hernia meshes in reconstruction of the abdominal wall: Animal model study. Pol. Przegl. Chir., 2011; 83: 19–26 ŁawniczakP. GrobelskiB. PasiekaZ. Properties comparison of intraperitoneal hernia meshes in reconstruction of the abdominal wall: Animal model study Pol. Przegl. Chir 2011 83 19 26 10.2478/v10035-011-0003-y22166238 Search in Google Scholar

Zakhem E., Raghavan S., Gilmont R.R., Bitar K.N.: Chitosan-based scaffolds for the support of smooth muscle constructs in intestinal tissue engineering. Biomaterials, 2012; 33: 4810–4817 ZakhemE. RaghavanS. GilmontR.R. BitarK.N. Chitosan-based scaffolds for the support of smooth muscle constructs in intestinal tissue engineering Biomaterials 2012 33 4810 4817 10.1016/j.biomaterials.2012.03.051333442922483012 Search in Google Scholar

Kafle P., Singh S.K., Sarkar I., Surin L.: Amniotic membrane transplantation with and without limbal stem cell transplantation in chemical eye injury. Nepal. J. Ophthalmol., 2015; 7: 52–55 KafleP. SinghS.K. SarkarI. SurinL. Amniotic membrane transplantation with and without limbal stem cell transplantation in chemical eye injury Nepal. J. Ophthalmol 2015 7 52 55 10.3126/nepjoph.v7i1.1316826695606 Search in Google Scholar

Wang S., Liu W., Han B., Yang L.: Study on a hydroxypropyl chitosan-gelatin based scaffold for corneal stroma tissue engineering. Appl. Surf. Sci., 2009; 255: 8701–8705 WangS. LiuW. HanB. YangL. Study on a hydroxypropyl chitosan-gelatin based scaffold for corneal stroma tissue engineering Appl. Surf. Sci 2009 255 8701 8705 10.1016/j.apsusc.2009.04.206 Search in Google Scholar

Ozcelik B., Brown K.D., Blencowe A., Daniell M., Stevens G.W.,Qiao G.G.: Ultrathin chitosan-poly(ethylene glycol) hydrogel films for corneal tissue engineering. Acta Biomater., 2013; 9: 6594–6605 OzcelikB. BrownK.D. BlencoweA. DaniellM. StevensG.W. QiaoG.G. Ultrathin chitosan-poly(ethylene glycol) hydrogel films for corneal tissue engineering Acta Biomater 2013 9 6594 6605 10.1016/j.actbio.2013.01.02023376126 Search in Google Scholar

Wang Y.H., Young T.H., Wang T.J.: Investigating the effect of chi-tosan/polycaprolactone blends in differentiation of corneal endothelial cells and extracellular matrix compositions. Exp. Eye Res., 2019; 185: 107679 WangY.H. YoungT.H. WangT.J. Investigating the effect of chi-tosan/polycaprolactone blends in differentiation of corneal endothelial cells and extracellular matrix compositions Exp. Eye Res 2019 185 107679 10.1016/j.exer.2019.05.01931129253 Search in Google Scholar

Simões M.J., Gärtner A., Shirosaki Y., Gil da Costa R.M., Cortez P.P., Gartnёr F., Santos J.D., Lopes M.A., Geuna S., Varejão A.S., Mauricio A.C.: In vitro and in vivo chitosan membranes testing for peripheral nerve reconstruction. Act. Med. Port., 2011; 24: 43–52 SimõesM.J. GärtnerA. ShirosakiY. Gil da CostaR.M. CortezP.P. GartnёrF. SantosJ.D. LopesM.A. GeunaS. VarejãoA.S. MauricioA.C. In vitro and in vivo chitosan membranes testing for peripheral nerve reconstruction Act. Med. Port 2011 24 43 52 10.20344/amp.344 Search in Google Scholar

Matsuda A., Kobayashi H., Itoh S., Kataoka K., Tanaka J.: Immobilization of laminin peptide in molecularly aligned chitosan by covalent bonding. Biomaterials, 2005; 26: 2273–2279 MatsudaA. KobayashiH. ItohS. KataokaK. TanakaJ. Immobilization of laminin peptide in molecularly aligned chitosan by covalent bonding Biomaterials 2005 26 2273 2279 10.1016/j.biomaterials.2004.07.03215585229 Search in Google Scholar

Yuan Y., Zhang P., Yang Y., Wang X., Gu X.: The interaction of Schwann cells with chitosan membranes and fibers in vitro. Biomaterials, 2004; 25: 4273–4278 YuanY. ZhangP. YangY. WangX. GuX. The interaction of Schwann cells with chitosan membranes and fibers in vitro Biomaterials 2004 25 4273 4278 10.1016/j.biomaterials.2003.11.02915046917 Search in Google Scholar

Ma J., Wang H., He B., Chen J.: A preliminary in vitro study on the fabrication and tissue engineering applications of a novel chitosan bilayer material as a scaffold of human neofetal dermal fibroblasts. Biomaterials, 2001; 22: 331–336 MaJ. WangH. HeB. ChenJ. A preliminary in vitro study on the fabrication and tissue engineering applications of a novel chitosan bilayer material as a scaffold of human neofetal dermal fibroblasts Biomaterials 2001 22 331 336 10.1016/S0142-9612(00)00188-5 Search in Google Scholar

Staroń A., Grabowska A., Jagusztyn-Krynicka E.K.: Nadproduk-cja i oczyszczanie rekombinowanych, heterologicznych białek w komórkach Escherichia coli. Post. Mikrobiol., 2008; 47: 83–95 StarońA. GrabowskaA. Jagusztyn-KrynickaE.K. Nadproduk-cja i oczyszczanie rekombinowanych, heterologicznych białek w komórkach Escherichia coli Post. Mikrobiol 2008 47 83 95 Search in Google Scholar

Griffith F.: The significance of pneumococcal types. J. Hyg., 1928; 27: 113–159 GriffithF. The significance of pneumococcal types J. Hyg 1928 27 113 159 10.1017/S0022172400031879216776020474956 Search in Google Scholar

Fisher A.K., Freedman B.G., Bevan D.R., Senger R.S.: A review of metabolic and enzymatic engineering strategies for designing and optimizing performance of microbial cell factories. Comput. Struct. Biotechol. J., 2014; 11: 91–99 FisherA.K. FreedmanB.G. BevanD.R. SengerR.S. A review of metabolic and enzymatic engineering strategies for designing and optimizing performance of microbial cell factories Comput. Struct. Biotechol. J 2014 11 91 99 10.1016/j.csbj.2014.08.010421227725379147 Search in Google Scholar

Hartley J.L.: Cloning technologies for protein expression and purification. Curr. Opin. Biotechnol., 2006;17: 359–366 HartleyJ.L. Cloning technologies for protein expression and purification Curr. Opin. Biotechnol 2006 17 359 366 10.1016/j.copbio.2006.06.01116839756 Search in Google Scholar

Goodwin D., Simerska P., Toth I.: Peptides as therapeutics with enhanced bioactivity. Curr. Med. Chem., 2012; 19: 4451–4461 GoodwinD. SimerskaP. TothI. Peptides as therapeutics with enhanced bioactivity Curr. Med. Chem 2012 19 4451 4461 10.2174/09298671280325154822830348 Search in Google Scholar

Kaszowska M.: Chemical structure and biosynthesis of lipopolysaccharide – important component of the cell envelope of Gram negative bacteria. Postępy Hig. Med. Dośw., 2004; 58: 333–342 KaszowskaM. Chemical structure and biosynthesis of lipopolysaccharide - important component of the cell envelope of Gram negative bacteria Postępy Hig. Med. Dośw 2004 58 333 342 Search in Google Scholar

Rietschel E.T., Brade H., Holst O., Brade L., Müller-Loennies S., Mamat U., Zähringer U., Beckmann F., Seydel U., Brandenburg K., Ulmer A.J., Mattern T., Heine H., Schletter J., Loppnow H. i wsp.: Bacterial endotoxin: Chemical constitution, biological recognition, host response, and immunological detoxification. W: Pathology of Septic Shock. Current Topics in Microbiology and Immunology, vol 216. red.: E.T. Rietschel, H. Wagner, Springer, Berlin-Heidelberg 1996, 39–81 RietschelE.T. BradeH. HolstO. BradeL. Müller-LoenniesS. MamatU. ZähringerU. BeckmannF. SeydelU. BrandenburgK. UlmerA.J. MatternT. HeineH. SchletterJ. LoppnowH. i wsp. Bacterial endotoxin: Chemical constitution, biological recognition, host response, and immunological detoxification. W: Pathology of Septic Shock Current Topics in Microbiology and Immunology vol 216 red RietschelE.T. WagnerH. Springer Berlin-Heidelberg 1996 39 81 10.1007/978-3-642-80186-0_3 Search in Google Scholar

Pospiech E., Peltre G., Wąsowicz E., Jeleń H., Greaser M.L., Mikołajczak B., Bresińska A., Gorączka A.: Metody separacji i ocena rozdziałów: elektroforeza, wysokosprawna kolumnowa chromatografia cieczowa, chromatografia gazowa, spektroskopia masowa. W: Metody pomiarów i kontroli jakości w przemyśle spożywczym i biotechnologii, red.: Z. Kędzior, M. Jankiewicz, Akademia Rolnicza im. Augusta Cieszkowskiego. Wydział Technologii Żywności, Poznań 2003, 155–193 PospiechE. PeltreG. WąsowiczE. JeleńH. GreaserM.L. MikołajczakB. BresińskaA. GorączkaA. Metody separacji i ocena rozdziałów: elektroforeza, wysokosprawna kolumnowa chromatografia cieczowa, chromatografia gazowa, spektroskopia masowa. W: Metody pomiarów i kontroli jakości w przemyśle spożywczym i biotechnologii, red Z. Kędzior, M. Jankiewicz, Aka-demia Rolnicza im. Augusta Cieszkowskiego Wydział Technologii Żywności Poznań 2003 155 193 Search in Google Scholar

Rosiński M., Piasecka-Kwiatkowska D., Warchalewski J.R.: Przegląd metod separacji i oczyszczania białek przydatnych w badaniach i analizie żywności. Żywn. Nauka. Technol. Jakość, 2005; 3: 5–22 RosińskiM. Piasecka-KwiatkowskaD. WarchalewskiJ.R. Przegląd metod separacji i oczyszczania białek przydatnych w badaniach i analizie żywności Żywn. Nauka. Technol. Jakość 2005 3 5 22 Search in Google Scholar

Rusiecka-Ziółkowska J., Stekla J., Szponar B., Walszewska M.: Rola endotoksyn w patomechanizmie sepsy. Pol. Merk. Lek., 2008; 25: 260–265 Rusiecka-ZiółkowskaJ. SteklaJ. SzponarB. WalszewskaM. Rola endotoksyn w patomechanizmie sepsy Pol. Merk. Lek 2008 25 260 265 Search in Google Scholar

Ostrowska-Czubenko J., Pieróg M., Gierszewska M.: Modyfikacja chitozanu: krótki przegląd. Wiad. Chem., 2016; 70: 9–10 Ostrowska-CzubenkoJ. PierógM. GierszewskaM. Modyfi-kacja chitozanu: krótki przegląd Wiad. Chem 2016 70 9 10 Search in Google Scholar

Zou P., Yang X., Wang J., Li Y., Yu H., Zhang Y., Liu G.: Advances in characterization and biological activities of chitosan and chitosan oligosaccharides. Food Chem., 2016; 190: 1174–1181 ZouP. YangX. WangJ. LiY. YuH. ZhangY. LiuG. Advances in characterization and biological activities of chitosan and chitosan oligosaccharides Food Chem 2016 190 1174 1181 10.1016/j.foodchem.2015.06.076 Search in Google Scholar

Koide S.S.: Chitin-chitosan: Properties, benefits and risks. Nutr. Res., 1998; 18: 1091–1101 KoideS.S. Chitin-chitosan: Properties, benefits and risks Nutr. Res 1998 18 1091 1101 10.1016/S0271-5317(98)00091-8 Search in Google Scholar

Radomski P., Piątkowski M., Bogdał D., Radmoski P., Jarosiński A.: Zastosowanie chitozanu oraz jego modyfikowanych pochod-nych do usuwania śladowych ilości metali ciężkich ze ścieków przemysłowych. Chemik, 2014; 68: 39–46 RadomskiP. PiątkowskiM. BogdałD. RadmoskiP. JarosińskiA. Zastosowanie chitozanu oraz jego modyfikowanych pochod-nych do usuwania śladowych ilości metali ciężkich ze ścieków przemysłowych Chemik 2014 68 39 46 Search in Google Scholar

Tarsi R., Muzzarelli R.A., Guzman C.A., Pruzzo C.: Inhibition of Streptococcus mutans adsorption to hydroxyapatite by low-molecular-weight chitosans. J. Dent. Res., 1997; 76: 665–672 TarsiR. MuzzarelliR.A. GuzmanC.A. PruzzoC. Inhibition of Streptococcus mutans adsorption to hydroxyapatite by low-molecular-weight chitosans J. Dent. Res 1997 76 665 672 10.1177/002203459707600207019062560 Search in Google Scholar

Xia W., Liu P., Zhang J., Chen J.: Biological activities of chitosan and chitooligosaccharides. Food Hydrocolloids, 2011; 25: 170–179 XiaW. LiuP. ZhangJ. ChenJ. Biological activities of chitosan and chitooligosaccharides Food Hydrocolloids 2011 25 170 179 10.1016/j.foodhyd.2010.03.003 Search in Google Scholar

Szmyt A., Dąbrowska A., Chrzanowska J.: Alternatywne metody otrzymywania biologicznie aktywnych białek i peptydów. Acta Sci. Pol. Biotechnol., 2015; 14: 33–44 SzmytA. DąbrowskaA. ChrzanowskaJ. Alternatywne metody otrzymywania biologicznie aktywnych białek i peptydów Acta Sci. Pol. Biotechnol 2015 14 33 44 Search in Google Scholar

eISSN:
1732-2693
Language:
English