Open Access

Robotic Technologies in Horticulture: Analysis and Implementation Prospects


Cite

A Green Deal, (2022). Available online: https://ec.europa.eu/info/strategy/priorities/2019-2024/european-green-deal [Aaccessed on March 2022]. Search in Google Scholar

Almasri, M., Elleithy, K., & Alajlan, A. (2015). Sensor fusion based model for collision free mobile robot navigation. Sensors, 16(1), 1-24. DOI: 10.3390/s16010024. Search in Google Scholar

Analytical review of the global robotics market 2019 [Analiticheskij obzor mirovogo rynka robototehniki 2019]. Online: https://www.sberbank.ru/common/img/uploaded/pdf/sberbank_robotics_review_2019_17.07.2019_m.pdf Accessed on 13.03.2023 [Accessed on March 2022] (In Russian). Search in Google Scholar

Andžāns, M., Bērziņš, J., Durst, J., Maskaliunaite, A., Nikitenko, A., Ķiploks, J., Rogers, J., Romanovs, U., Sliwa, Z., Väärsi, K., et al. Digital Infantry Battlefield Solution. Introduction to Ground Robotics, DIBS Project, Part I; Romanovs, U., Ed.; Milrem: Helsinki, Finland, 2016 Search in Google Scholar

Arnó, J., Martínez-Casasnovas, J., Ribes-Dasi, M. & Rosell, J. (2009). Review. PrecisionViticulture. Research topics, challenges and opportunities in site-specific vineyard management. Spanish Journal of Agricultural Research, 7(4), 779-790. DOI: 10.5424/sjar/2009074-1092. Search in Google Scholar

Astrand, B. & Baerveldt, A. J. (2005). A vision based row-following system for agricultural field machinery. Mechatronics, 15(2), 251-269. DOI: 10.1016/j.mechatronics.2004.05.005. Search in Google Scholar

Autonomous system for agricultural purposes such as spraying, tillage, fertilization, contour cut, harvest, and transportation (2019). Available from: http://www.raussendorf.de/en/fruit-robot.html [Accessed: March 2023] Search in Google Scholar

Autopilot (2019). Available from: http://www.trimble.com/Agriculture/autopilot.aspx [Accessed: March, 2022]. Search in Google Scholar

Barnea, E., Mairon, R. & Ben-Shahar, O. (2016). Colour-agnostic shape-based 3D fruit detection for crop harvesting robots. Biosystems Engineering, 146, 57–70. DOI: 10.1016/j.biosystemseng. 2016.01.013. Search in Google Scholar

Bechar, A. & Vigneault, C. (2016). Agricultural robots for field operations: Concepts and components. Biosystems Engineering, 149, 94-111. DOI: 10.1016/j.biosystemseng.2016.06.014. Search in Google Scholar

Bietresato, M., Carabin, G., Vidoni, R., Gasparetto, A. & Mazzetto, F. (2016). Evaluation of a LiDARbased 3D-stereoscopic vision system for crop-monitoring applications. Computers and Electronics in Agriculture, 124, 1–13. DOI: 10.1016/j.compag.2016.03.017. Search in Google Scholar

Bogue, R. (2016). Robots poised to revolutionise agriculture. Industrial Robot International Journal. 43(5), 450-456. DOI: 10.1108/IR-05-2016-0142. Search in Google Scholar

Bramley, R.G.V., Proffitt, A.P.B., Hinze, C.J., Pearse, B. & Hamilton, R.P. (2005). Generating benefits from Precision Viticulture through selective harvesting. Precision Agriculture, 5, 891-898. Search in Google Scholar

Bulanon, D. M., Burks, T. F. & Alchanatis, V. (2009). Image fusion of visible and thermal images for fruit detection. Biosystems Engineering, 103(1), 12–22. DOI: 10.1016/j.biosystemseng.2009.02.009. Search in Google Scholar

Freitas, G., Hamner, B., Bergerman, M. & Singh, S. (2012). A Practical Obstacle Detection System for Autonomous Orchard Vehicles. In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Proceedings of a meeting held 7-12 October 2012 (pp. 3391–3398). Vilamoura-Algarve, Portugal. DOI: 10.1109/IROS.2012.6385638. Search in Google Scholar

Garcia, E. & Gonzalez-de-Santos, P. (2006). On the improvement of walking performance in natural environments by a compliant adaptive gait. IEEE Transactions on Robotics, 22(6), 1240-1253. DOI: 10.1109/TRO.2006.884343 Search in Google Scholar

Gongal, A., Amatya, S., Karkee, M., Zhang, Q. & Lewis, K. (2015). Sensors and systems for fruit detection and localization: A review. Computers and Electronics in Agriculture, 116, 8–19. DOI: 10.1016/j.compag.2015.05.021. Search in Google Scholar

Gonzalez-de-Santos, P., Garcia, E. & Estremera, J. (2006). Quadrupedal Locomotion: An Introduction to the Control of Four-Legged Robots. London: SpringerVerlag; 2006. DOI|: 10.1007/1-84628-307-8. Search in Google Scholar

Hagras, H., Colley, M., Callaghan, V. & Carr-West, M. (2002). Online learning and adaptation of autonomous mobile robots for sustainable agriculture. Autonomous Robots, 13(1), 37-52. DOI: 10.1023/A:1015626121039. Search in Google Scholar

Hayashi, S., Shigematsu, K., Yamamoto, S., Kobayashi, K., Kohno, Y., Kamata, J. & Kurita, M. (2010). Evaluation of a strawberry-harvesting robot in a field test. Biosystems Engineering, 105, 160–171. DOI: 10.1016/j.biosystemseng.2009.09.011. Search in Google Scholar

Hemming, J., Ruizendaal, J., Willem Hofstee, J. & van Henten, E. J. (2014). Fruit detectability analysis for different camera positions in sweet-pepper. Sensors, 14(4), 6032–6044. DOI: 10.3390/s140406032 Search in Google Scholar

Hiremath, Van der Heijden, G. W. A. M., Van Evert, F. K., Stein, A. & Ter Braak, C. J. F. (2014). Laser range finder model for autonomous navigation of a robot in a maize field using aparticle filter. Computers and Electronics in Agriculture, 100,41-50. DOI: 10.1016/j.compag.2013.10.005 Search in Google Scholar

Khort, D., Kutyrev, A., Filippov, R. & Semichev, S. (2021). Development control system robotic platform for horticulture. In E3S Web of Conferences, 1st International Scientific and Practical Conference ITEEA 2021. 262, 01024. DOI: 10.1051/e3sconf/202126201024 Search in Google Scholar

Khort, D., Kutyrev, A., Kiktev, N., Hutsol, T., Glowacki, S., Kuboń, M., Nurek, T., Rud, A. & Gródek- Szostak, Z. (2022). Automated mobile hot mist generator: a quest for effectiveness in fruit horticulture. Sensors, 22, 8901. DOI: 10.3390/s22228901. Search in Google Scholar

Khort, D., Kutyrev, A., Smirnov, I. & Pupin, D. (2021). Development automated capture device for picking apples. E3S Web of Conferences, 285, 07025. DOI: 10.1051/e3sconf/202128507025. Search in Google Scholar

Khort, D., Kutyrev, A., Smirnov, I., Osypenko, V. & Kiktev, N. (2020). Computer vision system for recognizing the coordinates location and ripeness of strawberries. Communications in Computer and Information Science, 1158, 334-343. DOI: 10.1007/978-3-030-61656-4_22. Search in Google Scholar

Khort, D.O., Kutyrev, A.I. & Smirnov, I.G. (2022). Research into the Parameters of a Robotic Platform for Harvesting Apples. In: Hu, Z., Petoukhov, S., Yanovsky, F., He, M. (eds) Advances in Computer Science for Engineering and Manufacturing, ISEM 2021. Lecture Notes in Networks and Systems, vol 463. Springer, Cham. DOI: 10.1007/978-3-031-03877-8_13. Search in Google Scholar

Khort; D., Kutyrev, A., Filippov, R., Kiktev, N. & Komarchuk, D. (2019). Robotized Platform for Picking of Strawberry Berries. In 2019 IEEE International Scientific-Practical Conference Problems of Infocommunications, Science and Technology (PIC S&T), 8-11 Oct. 2019, Kyiv, Ukraine. DOI: 10.1109/PICST47496.2019.9061448. Search in Google Scholar

Kiktev, N., Didyk, A. & Antonevych, M. (2020). Simulation of Multi-Agent Architectures for Fruit and Berry Picking Robot in Active-HDL. In 2020 IEEE International Conference on Problems of Infocommunications. Science and Technology (PIC S&T), Kharkiv, Ukraine, 2020, 635-640. DOI: 10.1109/PICST51311.2020.9467936. Search in Google Scholar

Kormen, T., Leyzerson, Ch., Rivest, R. & Stein, K. (2011). Algorithms: construction and analysis [Algoritmy: postroenie i analiz]. Moscow, Williams Publishing House, 1296. Search in Google Scholar

Kutyrev, A., Kiktev, N., Jewiarz, M., Khort, D., Smirnov, I., Zubina, V., Hutsol, T., Tomasik & M.; Biliuk, M. Robotic Platform for Horticulture: Assessment Methodology and Increasing the Level of Autonomy (2022). Sensors, 22, 8901. DOI: 10.3390/s2222890 Search in Google Scholar

Kutyrev, A., Kiktev, N., Kalivoshko, O. & Rakhmedov, R. (2023). Recognition and Classification Apple Fruits Based on a Convolutional Neural Network Model. In Selected Papers of the IX International Scientific Conference “Information Technology and Implementation” (IT&I-2022). Conference Proceedings. Kyiv, Ukraine, November 30 - December 02, 2022. CEUR Workshop Proceedings, 3347, 90–101. https://ceur-ws.org/Vol-3347/Paper_8.pdf. Search in Google Scholar

Lakkad, S. (2004). Modeling and simulation of steering systems for autonomous vehicles. Master thesis. The Florida State University, US. https://www.academia.edu/37918621/Modeling_and_Simulation_of_Steering_Systems_for_Autonomous_Vehicles. Search in Google Scholar

Lee, E.A. & Seshia, S.A. (2017). Introduction to Embedded Systems - A Cyber-Physical Systems Approach. 2nd ed. Cambridge, Massachusetts: MIT Press. https://ptolemy.berkeley.edu/books/leeseshia/ Search in Google Scholar

Linz, A., Ruckelshausen, A., Wunder, E. & Hertzberg, J. (2014). Autonomous service robots for orchards and vineyards: 3d simulation environment of multi sensorbased and applications. In 12th International Conference on Precision Agriculture, At: Sacramento, CA, USA https://www.hs-osnabrueck.de/fileadmin/HSOS/Homepages/COALA/Veroeffentlichungen/2014-ICPA_2014_Autonomous_Service_Robots_for_Orchards_and_Vineyards_3D_Simulation_Environment_of_Multi_Sensor_Based_Navigation_and_Applications.pdf Search in Google Scholar

Lipiński, A. J., Markowski, P., Lipiński, S., & Pyra, P. (2016). Precision of tractor operations with soil cultivation implements using manual and automatic steering modes. Biosystems Engineering, 145:22-28. DOI: 10.1016/j.biosystemseng.2016.02.008 Search in Google Scholar

Luan, P.G. & Thinh, N. T. (2020). Real-Time Hybrid Navigation System-Based Path Planning and Obstacle Avoidance for Mobile Robots. Applied Sciences, 10, 3355. Search in Google Scholar

Lysenko, V.P., Bolbot, I.M., Lendiel, T.I., Amirgaliyev, Y., Nurseitova, K. et al. (2021). Mobile robot with optical sensors for remote assessment of plant conditions and atmospheric parameters in an industrial greenhouse. Proceedings of SPIE - The International Society for Optical Engineering, 2021. doi: 10.1117/12.2613975 Search in Google Scholar

New Automated Agricultural Platform–Kongskilde Vibro Crop Robotti. Available from: http://conpleks.com/robotech/new-automated [Accessed: March 2023] Search in Google Scholar

Nof, S. Y. (2009). Springer handbook of automation (pp. 1379-1396). S. Y. Nof (Ed.). Berlin, Heidelberg: Springer Berlin Heidelberg. Search in Google Scholar

Ochoa, S.F., Fortino, G. & Di Fatta, G. (2017). Cyber-physical systems, internet of things and big data. Future Generation Computer Systems, 75, 82-84. DOI: 10.1016/j.future.2017.05.040. Search in Google Scholar

Okamoto, H. & Lee, W.S. (2009). Green citrus detection using hyperspectral imaging. Comput. Electron. Agric., 66(2), 201–208. DOI: 10.1016/j.compag.2009.02.004. Search in Google Scholar

Pasichnyk, N., Komarchuk, D., Lysenko, V., Opryshko, O., Miroshnyk, V., Shvorov, S., ... & Lendiel, T. (2020, October). Substantiation of the Choice of the Optimal UAV Flight Altitude for Monitoring Technological Stresses for Crops of Winter Rape. In 2020 IEEE 6th International Conference on Methods and Systems of Navigation and Motion Control (MSNMC) (pp. 141-145). IEEE.. Search in Google Scholar

PROJECT ACTIVATE, (2022) Online: https://ammoniaengine.org/ [Accessed on 15 March 2022] Search in Google Scholar

Sgorbissa, A. & Zaccaria, R. (2012). Planning and obstacle avoidance in mobile robotics. Robotics and Autonomous Systems, 60, 628-638. DOI: 10.1016/j.robot.2011.12.009. Search in Google Scholar

Sharma, K. R., Honc, D., & Dušek, F. (2014, September). Sensor fusion for prediction of orientation and position from obstacle using multiple IR sensors an approach based on Kalman filter. In 2014 International Conference on Applied Electronics (pp. 263-266). IEEE. Search in Google Scholar

Silwal, A. Davidson, J., Karkee, M., Mo, C., Zhang, Q. & Lewis, K. (2016). Effort towards robotic apple harvesting in Washington State. In Proceedings of the 2016 American Society of Agricultural and Biological Engineers Annual International Meeting, Orlando, FL, USA, 17–20 July 2016. DOI: 10.13031/aim.20162460869 Search in Google Scholar

Skvortsov, E.A. Improving the Efficiency of Robotization of Agriculture [Povyshenie Jeffektivnosti Robotizacii Sel’skogo Hozjajstva]. Ph.D. Thesis, Federal State Budgetary Educational Institution of Higher Education “Ural State Agrarian University”, Yekaterinburg, Russia, 2017; p. 182. (In Russian). Search in Google Scholar

Smirnov, I., Kutyrev, A. & Kiktev, N. (2021). Neural network for identifying apple fruits on the crown of a tree. In E3S Web of Conferences. International scientific forum on computer and energy Sciences, WFCES 2021, 01021. DOI: 10.1051/e3sconf/202127001021. Search in Google Scholar

Stentz, A., Dima, C., Wellington, C., Herman, H. & Stager, D. (2002). A system for semi-autonomous tractor operations. Autonomous Robots, 13(1), 87-104. DOI: 10.1023/A:1015634322857. Search in Google Scholar

Vaeljaots, E., Lehiste, H., Kiik, M. & Leemet, T. (2018). Soil sampling automation case-study using unmanned ground vehicle. Eng. Rural Dev., 17, 982–987. DOI: 10.22616/ERDev2018.17.N503. Search in Google Scholar

Van Henten, E. J., Van Tuijl, B.A.J, Hoogakker, G.J., Van Der Weerd, M. J., Hemming, J., Kornet, J. G. & Bontsema, J. (2006). An autonomous robot for de-leafing cucumber plants grown in a highwire cultivation system. Biosyst. Eng., 94 (3), 317–323. DOI: 10.1016/j.biosystemseng. 2006.03.005. Search in Google Scholar

We put machines to work (2019). Available from: http://www.precisionmakers.com/greenbot/ [Accessed: March 2023]. Search in Google Scholar

Weltzien, C., Harms, H.-H. & Diekhans, N. (2006). Automotive Radar Sensor for Object. Agricultural Engineering, 61(5), 250–251. DOI: 10.15150/lt.2006.1114. Search in Google Scholar

Westling, F., Underwood, J. & Örn, S. (2018). Light interception modelling using unstructured LiDAR data in avocado orchards. Computers and Electronics in Agriculture, 153, 177-187. DOI: 10.1016/j.compag.2018.08.020 Search in Google Scholar

Zong, C. G., Ji, Z. J., Yu, Y. & Shi, H. (2020). Research on obstacle avoidance method for mobile robot based on multisensor information fusion. Sensors and Materials, 32(4), 1159-1170. DOI: 10.18494/SAM.2020.2540. Search in Google Scholar