Cite

Aiken, G. R., Mcknight, D. M., Wershaw, R. L., and Maccarthy, P. (1985). Humic substances in soil, sediments, and water. John Wiley and Sons, 1 ‒ 9. Search in Google Scholar

Albalasmeh, A.A., Hamdan, E. H., Gharaibeh, M.A., and El Hanandeh, A. (2021). Improving aggregate stability and hydraulic properties of Sandy loam soil by applying polyacrylamide polymer. Soil and Tillage Research, 206. DOI:10.1016/j.still.2020.104821. Search in Google Scholar

Angst, G., Mueller, K. E., Nierop, K. G., and Simpson, M. J. (2021). Plant-or microbial-derived? A review on the molecular composition of stabilized soil organic matter. Soil Biology and Biochemistry, 156. DOI:10.1016/j.soil-bio.2021.108189. Search in Google Scholar

Burg, P., Mašán, V. and Čížková, A. (2019) Impact of compost application in vineyards on change of psysical properties of soil. In Engineering for Rural Development: Proceedings of 18th International Scientific Conferene. Jelgava: Latvia University of Live Sciences and Tchnologies, pp. 576 ‒ 582. ISSN 1691-3043. Avaiable at: http://www.tf.llu.lv/conference/proceedings2019/Papers/N263.pdf. Search in Google Scholar

Brady, N. C. and Weil, R. R. (2008). The nature and properties of soil. 14th edition. Pearson Prentice Hall, Upper Saddle River, New Jersey, Columbus, Ohio. 975p. Search in Google Scholar

Bramble, D. S. E., Ulrich, S., Schöning, I., Mikutta, R., Brandt, L., Poll, C., Kandeler, E., Mikutta, C., Konrad, A., Siemens, J., Yang, Y., Polle, A., Schall, P., Ammer, C., Kaiser, K., and Schrumpf, M. (2024). Formation of mineral-associated organic matter in temperate soils is primarily controlled by mineral type and modified by land use and management intensity. Global Change Biology, 30(1), 1 – 19. DOI:10.1111/ gcb.17024. Search in Google Scholar

Claudia, D. C., Veronica, S. and Ioana, B. (2016). Dynamics of C4 species Cynodon dactylon L. on permanent grasland from Banat region (Western Romania) under the influence of climate. In Energy and Clean Technologies: Conference Proceedings, Sgem 2016, Vol Iii, pp. 115 – 120. Search in Google Scholar

Crème, A., Rumpel, C., Le Roux, X., Romian, A., Lan, T., and Chabbi A. (2018). Ley grassland under temperate climate had a legacy effect on soil organic matter quantity, 74 biogeochemical signature and microbial activities. Soil Biology and Biochemistry, 122(May), 203 ‒ 210. DOI:10.1016/j. soilbio.2018.04.018. Search in Google Scholar

Deru, J. G. C., Bloem, J., De Goede, R., Brussaard, L., and Van Eekeren, N. (2023). Effects of organic and inorganic fertilizers on soil properties related to the regeneration of eco-system services in peat grasslands. Applied Soil Ecology, 187(January). DOI:10.1016/j.apsoil.2023.104838. Search in Google Scholar

Demyan, M. S., Rasche, F., Schulz, E., Breulmann, M., Müller, T., and Cadisch, G. (2012). Use of specific peaks obtained by diffuse reflectance Fourier transforms mid-infrared spectroscopy to study the composition of organic matter in a Haplic Chernozem. European Journal of Soil Science, 63(2), 189 – 199. DOI:10.1111/j.1365-2389.2011.01420.x. Search in Google Scholar

Deng, W., Wang, X., Hu, H., Zhu, M., Chen, J., Zhang, S., Cheng, C., Zhu, Z., Wu, C., and Zhu, L. (2022). Variation characteristics of soil organic carbon storage and fractions with stand age in North Subtropical Quercus acutissima Carruth. Forest in China. Forests, 13(10), 1 – 14. DOI:10.3390/ f13101649. Search in Google Scholar

Egan, G., Zhou, X., Wang, D., Jia, Z., Crawley, M. J., and Fornara, D. (2018). Long-term effects of grassland management on soil microbial abundance: implications for soil carbon and nitrogen storage. Biogeochemistry, 141(2), 213 ‒ 228. DOI:10.1007/s10533-018-0515-1. Search in Google Scholar

Friedlingstein, P., O’sullivan, M., Jones, M. W., Andrew, R. M., Hauck, J., Olsen, A. and et al. (2020). Global Carbon Budget 2020. Earth System Science Data, 12(4), 3269 – 3340. DOI:10.5194/essd-12-3269-2020. Search in Google Scholar

Fornara, D.A., Wasson, E.-A., Christie, P., and Watson, C. J. (2016). Long-term nutrient fertilization and the carbon balance of permanent grassland: Any evidence for sustainable intensification? Biogeosciences, 13(17), 4975 – 4984. DOI:10.5194/bg-13-4975-2016. Search in Google Scholar

He, F., Tong, Z., Wang, L., Zheng, G., and Li, X. (2018). Effect of fertilizer additions on plant communities and soil properties in a temperate grassland steppe. Polish Journal of Environmental Studies, 27(4), 1533 – 1540. DOI:10.15244/ pjoes/78040. Search in Google Scholar

Honsová, D., Hejcman, M., Klaudisová, M., Pavlů, V., Kocourková, D., and Hakl, J. (2007). Species composition of an alluvial meadow after 40 years of applying nitrogen, phospohorus and potassium fertilizer. Preslia, 79(3), 245 – 258. Search in Google Scholar

Humbert, J. Y., Dwyer, J. M., Andrey, A., and Arlettaz, R. (2016). Impacts of nitrogen addition on plant biodiversity in mountain grasslands depend on dose, application duration and climate: A systematic review. Global Change Biology, 22(1), 110 – 120. DOI:10.1111/gcb.12986. Search in Google Scholar

Iepema, G., Deru, J. G. C., Bloem, J., Hoekstra, N., De Goede, R., Brussaard, L., & Van Eekeren, N. (2020). Productivity and topsoil quality of young and old permanent grassland: An on-farm comparison. Sustainability (Switzerland), 12(7). DOI:10.3390/su12072600. Search in Google Scholar

Iepema, G., Hoekstra, N. J., De Goede, R., Bloem, J., Brussaard, L., and Van Eekeren, N. (2021). Extending grassland age for climate change mitigation and adaptation on clay soils. European Journal of Soil Science, 73(1), 1 – 14. DOI:10.1111/ ejss.13134. Search in Google Scholar

Karabcová, H., Pospíšilová, L., Fiala, K., Škarpa, P., and Bjelková, M. (2015). Effect of organic fertilizers on soil organic carbon and risk trace elements content in soil under permanent Grassland. Soil and Water Research, 10(4), 228 – 235. DOI:10.17221/5/2015-SWR. Search in Google Scholar

Kidd, J., Manning, P., Simkin, J., Peacock, S., and Stockdale, E. (2017). Impacts of 120 years of fertilizer addition on a temperate grassland ecosystem. PLoS ONE, 12(3), 1 – 26. DOI:10.1371/journal.pone.0174632. Search in Google Scholar

Kogel-Knabner, I. (2000). Analytical approaches for characterizing soil organic matter. Organic Geochemistry, 31(7 – 8), 609 – 625. DOI:10.1016/S0146-6380(00)00042-5. Search in Google Scholar

Kögel-Knabner, I. (2002). The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biology and Biochemistry, 34(2), 139 ‒ 162. DOI:10.1016/S0038-0717(01)00158-4. Search in Google Scholar

Kolackova, I., Smolkova, B., Latal, O., Skalickova, S., Skladanka, J., Horky, P., Knot, P., Hammerschmiedt, T., Kintl, A., Holatko, J., Pozdisek, J., and Brtnicky, M. (2022). Does Digestate Dose Affect Fodder Security and Nutritive Value? Agriculture (Switzerland), 12(2), 1 – 11. DOI:10.3390/agriculture12020133. Search in Google Scholar

Kononova, M. M. (1963): Organičeskoe Veščestvo Počvy I.A.N. [Organic Art of Conception I.A.N.]. SSSR: Moskva. 311p. Search in Google Scholar

Kononova, M. (1966). Soil Organic Matter (2nd English ed.). Pergamon Press. Search in Google Scholar

Knoblauch, C., Watson, C., Berendonk, C., Becker, R., Wrage-Mönnig, N., and Wichern, F. (2017). Relationship between remote sensing data, plant biomass and soil nitrogen dynamics in intensively managed grasslands under controlled conditions. Sensor, 17(7), 1 ‒ 13. DOI:10.3390/ s17071483. Search in Google Scholar

Kowalczyk-Juśko, A., Pochwatka, P., Mazurkiewicz, J., Pulka, J., Kępowicz, B., Janczak, D., and Dach, J. (2023). Reduction of greenhouse gas emissions by replacing fertilizers with digestate. Journal of Ecological Engineering, 24(4), 312 – 319. DOI:10.12911/22998993/161013. Search in Google Scholar

Lapidus, A. L., Gyul’maliev, A. M., Zhagfarov, F. G., and Yarkova, T.A. (2022). Quantum-chemical evaluation of the energies of solvation of humic substances in various solvents. Solid Fuel Chemistry, 56(5), 342 – 346. DOI:10.3103/ S0361521922050068. Search in Google Scholar

Lehmann, J. & Kleber, M. (2015). The contentious nature of soil organic matter. Nature, 528(7580), 60 – 68. DOI:10.1038/ nature16069. Search in Google Scholar

Li, M., Hu, H., He, X., Jia, J., Drosos, M., Wang, G., Liu, F., Hu, Z., and Xi, B.(2019) Organic carbon sequestration in soil humic substances as affected by application of different nitrogen fertilizers in a vegetable-rotation cropping system. Journal of Agricultural and Food Chemistry, 67(11), 3106 – 3113. DOI:10.1021/acs.jafc.8b07114. Search in Google Scholar

Li, Q., Wang, L., Fu, Y., Lin, D., Hou, M., Li, X., Hu, D., and Wang, Z. (2023). Transformation of soil organic matter subjected to environmental disturbance and preservation of organic matter bound to soil minerals: a review. Journal of Soils and Sediments, 23(3), 1485 – 1500. DOI:10.1007/ s11368-022-03381-y. Search in Google Scholar

Maltas, A., Kebli, H., Oberholzer, H. R., Weisskopf, P., and Sinaj, S. (2018). The effects of organic and mineral fertilizers on carbon sequestration, soil properties, and crop yields from a long-term field experiment under a Swiss conventional farming system. Land Degradation and Development, 29(4), 926 – 938. DOI:10.1002/ldr.2913. Search in Google Scholar

Mayel, S., Jarrah, M. and Kuka, K. (2021). How does grassland management affect physical and biochemical properties of temperate grassland soils? A review study. Grass and Forage Science, 76(2), 215 – 244. DOI:10.1111/gfs.12512. Search in Google Scholar

Meng, M., Li, C., Zhao, Y., Lin, J., Liu, X., Jia, Z., and Zhang, J. (2022). Long-term forest conversion affects soil stability and humic substances in aggregate fractions in subtropical China. Forests, 13(2), 1 – 15. DOI:10.3390/f13020339. Search in Google Scholar

Menšík, L., Hlisnikovský, L., Pospíšilová, L., and Kunzová, E. (2018). The effect of application of organic manures and mineral fertilizers on the state of soil organic matter and nutrients in the long-term field experiment. Journal of Soils and Sediments, 18(1), 2813 – 2822. DOI:10.1007/s11368-018-1933-3. Search in Google Scholar

Menšík, L. and Nerušil, P. (2019). Production, qualitative and stand changes of permanent grassland in relation to the intensity of utilization and fertilization level in the Malá Haná region. Praha: Crop Reasearch Institute, Praha 6 – Ruzyně, 121p. Search in Google Scholar

Menšík, L., Nerušil, P., Plisková, J., and Kunzová, E. (2023). Vývoj kalibračních rovnic k predikci půdní reakce (pH) pomoví NIRS v půdách trvalých travních porostů (TTP) v oblasti Boskovické brázdy. Ověřená technologie. Výzkumný ústav rostlinnné výroby, v.v.i. – VS Jevíčko, 23p. Search in Google Scholar

Meloun, M. and Militký, J. (2012). Interactive Statistical Data Analysis [Interaktivní statistická analýza dat]. Praha: Univerzita Karlova v Praze: Karolinum (in Czech), 960p. Search in Google Scholar

Mustafa, A., Bartuška, M., Fryčová, K., Nezhad, M. T. K., and Frouz, J. (2022). Comparison of zimmermann and six fractionation methods aimed at distinguishing between active, slow, and passive pools of soil organic matter. Journal of Soil Science and Plant Nutrition, 22(3), 3110 – 3117. DOI:10.1007/s42729-022-00871-3. Search in Google Scholar

Nelson, D. W. and Sommers, L. E. (1996). Methods of Soil Analysis. Part 3. Chemical Methods. Soil Science Society of America Book Series, pp. 961 ‒ 1010. Search in Google Scholar

Němeček, J., Mühlhanselová, M., Macků, J., Vokoun, J., Vavříček, D., and Novák, P. et al. (2011). Taxonomický klasifikační systém půd České republiky [Taxonomic soil classification system of the Czech Republic]. Prague: ČZU Prague, 93p. ISBN 978-80-213-2155-7 Search in Google Scholar

Nobile, C. M., Bravin, M. N., Becquer, T., and Paillat, J. (2020). Chemosphere Phosphorus sorption and availability in an andosol after a decade of organic or mineral fertilizer applications : Importance of pH and organic carbon modifications in the soil as compared to phosphorus accumulation. Chemosphere, 239, 124709. DOI:10.1016/j.chemosphere.2019.124709. Search in Google Scholar

Ondrasek, G., Bakić Begić, H., Zovko, M., Filipović, L., Meriño-Gergichevich, C., Savić, R., and Rengel, Z. (2019). Biogeochemistry of soil organic matter in agroecosystems & environmental implications. Science of Total Environment, 658, 1559 – 1573. DOI:10.1016/j.scitotenv.2018.12.243. Search in Google Scholar

Piccolo, A. (1996). Humic Substances in Terrestrial Ecosystems. Amsterdam: Elsevier Science B.V., 675p. Search in Google Scholar

Piccolo, A. (2001). The supramolecular structure of humic substances. Soil Science, 166(11), 810 – 832. Search in Google Scholar

Pierzynski, G. M., Sims J. T. and Vance, G. F. (2000). Soil and environment duality. CRC Press, Boca Raton. 459p. Search in Google Scholar

Poeplau, C. (2021). Grassland soil organic carbon stocks along management intensity and warming gradients. Grass and Forage Science, 76(2), 186 – 195. DOI:10.1111/gfs.12537. Search in Google Scholar

Pospíšilová, L. (2012). Nedegradační metody studia kvality přírodních humusových látek [Non-degradation methods for studying the quality of natural humic substances]. Folia Universitatis Agriculturae et Silviculturae Mendelianae Brunensis. Brno: Mendelova univerzita v Brně. ISBN 978-80-7375-662-8. Search in Google Scholar

Pospíšilová, L., Formanek, P., Kucerik, J., Liptaj, T., Losak, T., and Martensson, A. (2011). Land use effects on carbon quality and soil biological properties in Eutric Cambisol. Acta Agriculturae Scandinavica Section B: Soil and Plant Science, 61(7), 661 – 669. DOI:10.1080/09064710.2010.539576. Search in Google Scholar

Pospíšilová, L., Vlček, V., Hybler, V., et al. (2016). Standard analytical methods and evaluation criteria of soil physical, agrochemical, biological and hygienic parameters. Mendel Universiti in Brno: Folia Universitatis Agriculturae at Silvi-culturae Mendelianae Brunensis, Brno. Search in Google Scholar

Rambaut, L. A. E., Vayssières, J., Versini, A., Salgado, P., Lecomte, P., and Tillard, E. (2022). 15-Year fertilization increased soil organic carbon stock even in systems reputed to be saturated like permanent grassland on andosols. Geoderma, 425(May), 116025. DOI:10.1016/j.geoderma.2022.116025. Search in Google Scholar

Qi, L., Zhang, M., Yin, J., Ren, W., Sun, S., Chen, Z., Yuan, T., and Guo, L. (2023). The interactive effect of grazing and fertilizer application on soil properties and bacterial community structures in a typical grassland in the central Inner Mongolia Plateau. Frontiers in Ecology and Evolution, 11. DOI:10.3389/fevo.2023.1174866. Search in Google Scholar

Raguraj, S., Kasim, S., Jaafar, N. M., Nazli, M. H., and Amali, R. K. A. (2022). A comparative study of tea waste derived humic-like substances with lignite-derived humic substances on chemical composition, spectroscopic properties and biological activity. Environmental Science and Pollution Research, 29(40), 60631 – 60640. DOI:10.1007/s11356-022-20060-0. Search in Google Scholar

Shi, R., Liu, Z., Li, Y., Jiang, T., Xu, M., Li, J., and Xu, R. (2019). Mechanisms for increasing soil resistance to acidification by long-term manure application. Soil and Tillage Research, 185, 77 – 84. DOI:10.1016/j.still.2018.09.004. Search in Google Scholar

Sparks D. J. (2003). Environmental Soil Chemistry. London: Academic Press, Second Edition, 352p. Search in Google Scholar

STATISTICA verse 14.0 (Stat-Soft Inc., Tulsa USA, StatSoft ČR s.r.o. 2021). Search in Google Scholar

Stevenson, F. J. (1994). Humus Chemistry, Genesis, Composition, Reactions. 2nd Editon, New York: John Wiley & Sons, Inc., 512p. Search in Google Scholar

Sun, Q., Yang, X., Meng, J., Lan, Y., Han, X., Chen, W., and Huang, Y. (2022). Long-term effects of straw and straw-derived biochar on humic substances and aggregate-associated humic substances in brown earth soil. Frontiers in Environmental Science, 10(May), 1 – 11. DOI:10.3389/fenvs.2022.899935. Search in Google Scholar

Tian, X., Liu, Y., Wang, K., & Wang, J. (2022). Response mechanism of soil carbon and nitrogen transformation to polymer materials under drip irrigation. Journal of Soil Science and Plant Nutrition, 22(2), 1351 – 1361. DOI:10.1007/ s42729-021-00737-0. Search in Google Scholar

Verlinden, G., Pycke, B., Mertens, J., Debersaques, F., Verheyen, K., Baert, G., Bries, J., and Haesaert, G. (2009). Application of humic substances results in consistent increases in crop yield and nutrient uptake. Journal of Plant Nutrition, 32(9), 1407 – 1426. DOI:10.1080/01904160903092630. Search in Google Scholar

Wang, R., Zhang, Y., He, P., Yin, J., Yang, J., Liu, H., Cai, J., Shi, Z., Feng, X., Dijkstra, F.A., Han, X., and Jiang, Y. (2018). The intensity and frequency of nitrogen addition alter soil chemical properties depending on mowing management in a temperate steppe. Journal of Environmental Management, 224, 77 – 86. DOI:10.1016/j.jenvman.2018.07.03. Search in Google Scholar

Xiang, X., Liu, J., Zhang, J., Li, D., Xu, C., and Kuzyakov, Y. (2020). Divergence in fungal abundance and community structure between soils under long-term mineral and organic fertilization. Soil & Tillage Research, 196, 104491. DOI:10.1016/j.still.2019.104491. Search in Google Scholar

Zhang, C.-J., Yang, Z.-L., Shen, J.-P., Sun, Y.-F., Wang, J.-T., Han, H.-Y., Wan, S.-Q., Zhang, L.-M., and He, J.-Z. (2018). Long-term nitrogen addition, watering and mowing impacts on ammonia oxidizers, denitrifiers and plant communities in a temperate steppe. Applied Soil Ecology, 130, 241 – 250. DOI:10.1016/j.apsoil.2018.06.017. Search in Google Scholar

eISSN:
1338-4376
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Plant Science, Ecology, other