Cite

Chapagain, T. and Riseman, A. (2014). Barley-pea intercropping: Effects on land productivity, carbon and nitrogen transformations. Field Crops, Research, 166, 18 25. DOI : 10.1016/j.fcr.2014.06.014. Open DOISearch in Google Scholar

ČSN ISO 5531 (560515) (1993). Československá norma. Pšeničná mouka. Stanovení mokrého lepku. Search in Google Scholar

Doltra, J., Lægdsmand, M. and Olesen, J. E. (2011). Cereal yield and quality as affected by nitrogen availability in organic and conventional arable crop rotations: a combined modelling and experimental approach. European Journal of Agronomy, 34(2), 83 95. DOI:10.1016/j.eja.2010.11.002. Open DOISearch in Google Scholar

Dvořák, P., Capouchová, I., Král, M., Konvalina, P., Janovská, D., and Satranský, M. (2022). Grain yield and quality of wheat in wheat-legumes intercropping under organic and conventional growing systems. Plant Soil and Environment, 68, 553 559. DOI:10.17221/273/2022-PSE. Open DOISearch in Google Scholar

Eskandari, H. (2011). Intercropping of wheat (Triticum aestivum) and bean (Vicia faba): effects of complementarity and competition of intercrop components in resource consumption on dry matter production and weed growth. African Journal of Biotechnology, 10(77), 17755 17762, DOI :10.5897/AJB11.2250. Open DOISearch in Google Scholar

Glaze-Corcoran, S., Hashemi, M., Sadeghpour, A., Jahanzad, E., Afshar, R. K., Liu, X., et al. (2020). Understanding intercropping to improve agricultural resiliency and environmental sustainability. Advanced in Agronomy, 162, 199 – 256. doi:10.1016/bs.agron.2020.02.004. Open DOISearch in Google Scholar

Hauggaard-Nielsen, H., Ambus, P. and Jensen, E. S. (2003). The comparison of nitrogen use and leaching in sole cropped versus intercropped pea and barley. Nutrient Cycling in Agroecosystems, 65, 289 – 300. DOI :10.1023/A:1022612528161. Open DOISearch in Google Scholar

Hauggaard-Nielsen, H., Jørnsgård, B., Kinane, J., and Jensen, E. S. (2008). Grain legume – cereal intercropping: the practical application of diversity, competition and facilitation in arable and organic cropping systems. Renewable Agriculture and Food Systems, 23, 3 – 12. DOI:10.1017/S1742170507002025. Open DOISearch in Google Scholar

ICC (1994a). 116/1 Determination of the Sedimentation Value (according to Zeleny) as an Approximate Measure of Baking Quality. International Association for Cereal Science and Technology. Search in Google Scholar

ICC (1994b). 105/2 Determination of Crude Protein in Cereals and Cereal Products for Food and for Feed. International Association for Cereal Science and Technology. Search in Google Scholar

ICC 107/1 (1995). Determination of the Falling Number according to Hagberg as a Measure of the Degree of Alpha- Amylase Activity in Grain and Flour. International Association for Cereal Science and Technology. Search in Google Scholar

ISO 3093:2004. Wheat, rye and their flour, durum wheat and durum wheat semolina – Determination of the falling number according to Hagberg-Perten Search in Google Scholar

ISO 7971-3:2019. Cereals Determination of bulk density, called mass per hectolitre Part 3: Routine method. Search in Google Scholar

IUUS/IS TRIC/FAO. 2006. World reference base for soil resources 2006: 115 Search in Google Scholar

Jensen, E. S., Carlsson, G. and Hauggaard-Nielsen, H. (2020). Intercropping of grain legumes and cereals improves the use of soil N resources and reduces the requirement for synthetic fertilizer N: A global-scale analysis. Agronomy for Sustainable Development, 40, 5. DOI :10.1007/s13593-020-0607-x. Open DOISearch in Google Scholar

Lai, H. L., Gao, F.y., Su, H., Zheng, P., Li, Y. Y., and Yao, H. Y. (2022). Nitrogen distribution and soil microbial community characteristics in a Legume-Cereal Intercropping system: A review. Agronomy-Basel, 12(8), 1900. DOI :10.3390/agronomy12081900. Open DOISearch in Google Scholar

Li, C. J., Hoffland, E., Kuyper, T. W., Yu, Y., Zhang, C. C., Li, H. G., Zhang, F. S., and van der Werf, W. (2020). Syndromes of production in intercropping impact yield gains. Nature Plants, 6, 653 660. DOI :10.1038/s41477-020-0680-9. Open DOISearch in Google Scholar

Liu, R., Zhou, G. P., Chang, D. N., Gao, S. J., Han, M., Zhang, J. D., Sun, X. F., and Cao, W. D. (2022). Transfer characteristics of nitrogen fixed by leguminous green manure crops when intercropped with maize in northwestern China. Journal of Integrative Agriculture, 21, 1177 1187. DOI :10.1016/S2095-3119(21)63674-2. Open DOISearch in Google Scholar

Mäder, P., Hahn, D., Dubois, D., Gunst, L., Alföldi, T., Bergmann, H., Oehme, M., Armadò, R., Schneider, H., Graf, U., Velimirov, A., Fließbach, A., and Niggli, U. (2007). Wheat quality in organic and conventional farming: Results of 21 year field experiment. Journal of the Science of Food and Agriculture, 87, 1826 1835. DOI :10.1002/jsfa.2866. Open DOISearch in Google Scholar

Malézieux, E., Crozat, Y., Dupraz, C., L aurans, M., M akowski, D., O zier-Lafontaine, H., Rapidel B., Tourdonnet, S., and Valantin-Morison, M. (2008). Mixing plant species in cropping systems: concepts, tools and models. A review. Agronomy for Sustainable Development, 29(1), 43 62. DOI :10.1051/agro:2007057. Open DOISearch in Google Scholar

Moutier, N., Baranger, A., Fall, S., Hanocq, E., Marget, P., Floriot, M., and Gauffreteau, A. (2022). Mixing ability of intercropped wheat varieties: stability across environments and tester legume species. Frontiers in Plant Science, 13, 877791. DOI :10.3389/fpls.2022.877791. Open DOISearch in Google Scholar

Nelson, W. C. D., Siebrecht-Schöll, D. J., Hoffmann, M. P., Rötter, R. P., Whitbread, A. M., and Link, W. (2021). What determines a productive winter bean-wheat genotype combination for intercropping in central Germany? European Journal of Agronomy, 128(2021), 126294. DOI :10.1016/j.eja.2021.126294. Open DOISearch in Google Scholar

Neugschwandtner, R. W., Kaul, H. P., Moitzi, G., Klimek-Kopyra, A., Lošák, T., and Wagentristl, H. (2021). A low nitrogen fertilizer rate in oat-pea intercrops does not impair N2 fixation. Acta Agriculturae Scandinavica. Section B-Soil and Plant Science, 71, 182 190. DOI :10.1080/09064710.2020.1869819. Open DOISearch in Google Scholar

Pellegrini, F., Carlesi, S., Nardi, G., and Bàrberi P. (2021). Wheat-clover temporary intercropping under Mediterranean conditions affects wheat biomass, plant nitrogen dynamics and grain quality. European Journal of Agronomy, 130, 126347. DOI :10.1016/j.eja.2021.126347. Open DOISearch in Google Scholar

Poudel, D. D., Horwath, W. R., Lanini, W. T., Temple, S. R., and van Bruggen, A. H. C. (2002). Comparison of soil N availability and leaching potential, crop yields and weeds in organic, low-input and conventional farming systems in northern California. Agriculture, Ecosystems & Environment, 90(2), 125 137. DOI :10.1016/S0167-8809(01)00196-7. Open DOISearch in Google Scholar

Sammama, H., Mazri, M. A., Ouhmane, L., Sammama, A., Hsissou, D., El Kaoua, M., and Alfeddy, M. N. (2022). Microbial noculation improves soil properties, nutrient uptake and plant growth in soft wheat-faba bean intercropping. Journal of Soil Science and Plant Nutrition, 22(1), 5159 – 5173. doi:10.1007/s42729-022-00991-w. Open DOISearch in Google Scholar

Šarūnaite, L., Deveikyte, I. and Kadžiuliene, Ž. (2010). Intercropping spring wheat with grain legume in an organic crop rotation. Žemdirbystė Agriculture, 97(3), 51 – 58. Search in Google Scholar

Tortorella, D., Scalise, A., Pristeri, A., Petrovičová, B., Monti, M., and Gelsomino, A. (2013). Chemical and biological responses in a Mediterranean sandy clay loam soil under grain legume-barley intercropping. Agrochimica, 57(1), 1 21. Search in Google Scholar

Tripathi, S. C., Venkatesh, K., Meena, R. P., Subhash, Ch., and Singh, G. P. (2021). Sustainable intensification of maize and wheat cropping system through pulse intercropping. Scientific Reports, 11, 18805. DOI :10.1038/s41598-021-98179-2. Open DOISearch in Google Scholar

Tsialtas, I. T., Baxevanos, D., V lachostergios, D. N., Dordas, C., and Lithourgidis, A. (2018). Cultivar complementarity for symbiotic nitrogen fixation and water use efficiency in pea-oat intercrops and its effect on forage yield and quality. Field Crops Research, 226, 28 37. DOI :10.1016/j.fcr.2018.07.005. Open DOISearch in Google Scholar

Vrignon-Brenas, S., Celette, F., Piquet-Pissaloux, A., Corre-Hellou, G., and David, C. (2018). Intercropping of white clover with organic wheat to improve the trade-off between wheat yield, protein content and the provision of ecological services by white clover. Field Crops Research, 224, 160 169, DOI :10.1016/j.fcr.2018.05.009. Open DOISearch in Google Scholar

Wasaya, A., Ahmad, R., Hassan, F. U., Ansar, M., Manaf, A., and Sher, A. (2013). Enhancing crop productivity through wheat (Triticum aestivum L.) – fenugreek intercropping system. Journal of Animal and Plant Sciences, 23, 210 215. Search in Google Scholar

Yao, X., L i, Y., Liao, L., S un, G., Wang, H. X., and Ye, S. (2019). Enhancement of nutrient absorption and interspecific nitrogen transfer in a Eucalyptus urophylla×eucalyptus grandis and Dalbergia odorifera mixed plantation. Forest Ecology and Management, 449, Article 117465. DOI :10.1016/j.foreco.2019.117465. Open DOISearch in Google Scholar

Zang, H., Yang, X., Feng, X., Qian, X., Hu, Y., Ren, C., and Zeng, Z. (2015). Rhizodeposition of nitrogen and carbon by mungbean (Vigna radiata L.) and its contribution to intercropped oats (Avena nuda L.). PLoS ONE, 10, Article e0121132. DOI :10.1371/journal.pone.0121132. Open DOISearch in Google Scholar

eISSN:
1338-4376
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Plant Science, Ecology, other