1. bookVolume 67 (2021): Issue 4 (December 2021)
Journal Details
First Published
06 Jun 2011
Publication timeframe
4 times per year
Open Access

Biological functions of lignans in plants

Published Online: 12 Mar 2022
Volume & Issue: Volume 67 (2021) - Issue 4 (December 2021)
Page range: 155 - 165
Received: 29 Jun 2021
Accepted: 24 Jan 2022
Journal Details
First Published
06 Jun 2011
Publication timeframe
4 times per year

Andargie, M., Vinas, M., Rathgeb, A., Möller, E., and Karlovsky, P. (2021). Lignans of sesame (Sesamum indicum L.): A Comprehensive Review. Molecules, 26(4), 883. DOI:10.3390/molecules26040883.10.3390/molecules26040883791495233562414 Search in Google Scholar

Anjum, S., Komal, A., Drouet, S., Kausar, H., Hano, C., and Abbasi, B.H. (2020). Feasible production of lignans and neolignans in root-derived in vitro cultures of flax (Linum usitatissimum L.). Plants, 9(4), 409. DOI:10.3390/plants9040409.10.3390/plants9040409723853732218181 Search in Google Scholar

Bagniewska-Zadworna, A., Barakat, A., Łakomy, P., Smoliński, D.J., and Zadworny, M. (2014). Lignin and lignans in plant defence: Insight from expression profiling of cinnamyl alcohol dehydrogenase genes during development and following fungal infection in Populus. Plant Science, 229, 111 – 121. DOI:10.1016/j.plantsci.2014. Search in Google Scholar

Balík, J., Híc, P., Tříska, J., Vrchotová, N., Smetana, P., Smutek, L., Rohlik, B.A., and Houška, M. (2021). Beer and beer-based beverage contain lignans. Journal of Food Science and Technology, 58(2), 581 ‒ 585. DOI:10.1007/s13197-020-04570-8.10.1007/s13197-020-04570-8784791233568851 Search in Google Scholar

Barker, D. (2019). Lignans. Molecules, 24(7). DOI:10.3390/molecules24071424.10.3390/molecules24071424647972430978936 Search in Google Scholar

Bjelková, M., Filip, V., Kyselka, J., Ševčík, R., and Větrovcová, M. (2017). Výběr a charakteristika lněného semene jako vstupní suroviny [Selection and characteristics of flaxseed as an input raw material]. Agritec Plant Research Ldt. Šumperk, Czech Republic. ISBN 978-80-87360-57-6. Search in Google Scholar

Chen, R., Li, Q., Tan, H., Chen, J., Xiao, Y., Ma, R., Gao, S., Zerbe, P., Chen, W., and Zhang, L. (2015). Gene-to-metabolite network for biosynthesis of lignans in MeJA-elicited Isatis indigotica hairy root cultures. Frontiers in Plant Science, 6, 952. DOI:10.3389/fpls.2015.00952.10.3389/fpls.2015.00952463057026579184 Search in Google Scholar

Chhillar, H., Chopra, P., and Ashfaq, M. (2020). Lignans from linseed (Linum usitatissimum L.) and its allied species: Retrospect, introspect and prospect. Critical Reviews in Food Science and Nutrition. DOI:10.1080/10408398.2020.1784840.10.1080/10408398.2020.178484032619358 Search in Google Scholar

Corbin, C., Drouet, S., Markulin, L., Auguin, D., Lainé, É., Davin, L.B., Cort, J.R., Lewis, N.G., and Hano, C. (2018). A genome-wide analysis of the flax (Linum usitatissimum L.) dirigent protein family: from gene identification and evolution to differential regulation. Plant Molecular Biology, 97(1 ‒ 2), 73 ‒ 101. DOI:10.1007/s11103-018-0725-x.10.1007/s11103-018-0725-x29713868 Search in Google Scholar

Dalisay, D.S., Kim, K.W., Lee, C.S., Yang, H., Rübel, O., Bowen, B.P., Davin, L.B., and Lewis, N.G. (2015). Dirigent protein-mediated lignan and cyanogenic glucoside formation in flax seed: integrated omics and MALDI mass spectrometry imaging. Journal of Natural Products, 78(6), 1231 ‒ 1242. DOI:10.1021/acs.jnatprod.5b00023.10.1021/acs.jnatprod.5b0002325981198 Search in Google Scholar

Danielsen, L., Lohaus, G., Sirrenberg, A., Karlovsky, P., Bastien, C., Pilate, G., and Polle, A. (2013). Ectomycorrhizal colonization and diversity in relation to tree biomass and nutrition in a plantation of transgenic poplars with modified lignin biosynthesis. PLoS ONE, 8, e59207. DOI:10.1371/journal.pone.0059207.10.1371/journal.pone.0059207359630023516610 Search in Google Scholar

De Silva, S.F. and Alcorn, J. (2019). Flaxseed lignans as important dietary polyphenols for cancer prevention and treatment: Chemistry, pharmacokinetics, and molecular targets. Pharmaceuticals, 12(2), 68. DOI:10.3390/ph12020068.10.3390/ph12020068663031931060335 Search in Google Scholar

DellaGreca, M., Zuppolini, S., and Zarrelli, A. (2013). Isolation of lignans as seed germination and plant growth inhibitors from Mediterranean plants and chemical synthesis of some analogues. Phytochemistry Reviews, 12, 717 – 731. DOI:10.1007/s11101-013-9311-7.10.1007/s11101-013-9311-7 Search in Google Scholar

Dowd, C., Wilson, I.W., and McFadden, H. (2004). Gene expression profile changes in cotton root and hypocotyl tissues in response to infection with Fusarium oxysporum f. sp. vasinfectum. Molecular Plant-Microbe Interactions, 17, 654 – 667. DOI:10.1094/MPMI.2004.17.6.654.10.1094/MPMI.2004.17.6.65415195948 Search in Google Scholar

Durazzo, A., Lucarini, M., Camilli, E., Marconi, S., Gabrielli, P., Lisciani, S., Gambelli, L., Aguzzi, A., Novellino, E., Santini, A., Turrini, A., and Marletta, L. (2018). Dietary lignans: Definition, description and research trends in databases development. Molecules, 23(12), 3251. DOI:10.3390/molecules23123251.10.3390/molecules23123251632143830544820 Search in Google Scholar

Fang, X. and Hu, X. (2018). Advances in the synthesis of lignan natural products. Molecules, 23(12). DOI:10.3390/molecules23123385.10.3390/molecules23123385632126130572693 Search in Google Scholar

Fardet, A. (2010). New hypotheses for the health-protective mechanisms of whole-grain cereals: What is beyond fibre? Nutrition Research Reviews, 23, 65 ‒ 134. DOI:10.1017/S0954422410000041.10.1017/S095442241000004120565994 Search in Google Scholar

Ganguly, S., Panjagari, N.R., and Raman, R.K. (2021). Flaxseed (Linum usitatissimum). In: Tanwar, B., Goyal, A. (Eds.) Oil-seeds: Health Attributes and Food Applications. Singapore: Springer. DOI:10.1007/978-981-15-4194-0_10.10.1007/978-981-15-4194-0_10 Search in Google Scholar

Garros, L., Drouet, S., Corbin, C., Decourtil, C., Fidel, T., Lebas de Lacour, J., Leclerc, E.A., Renouard, S., Tungmunnithum, D., Doussot, J., Abassi, B.H., Maunit, B., Lainé, É., Fliniaux, O., Mesnard, F., and Hano, C. (2018). Insight into the influence of cultivar type, cultivation year, and site on the lignans and related phenolic profiles, and the health-promoting antioxidant potential of flax (Linum usitatissimum L.) seeds. Molecules, 123(10), 2636. DOI:10.3390/molecules23102636.10.3390/molecules23102636622260730322184 Search in Google Scholar

Ghotbzadeh Kermani, S., Saeidi, G., Sabzalian, M.R., and Gianinetti, A. (2019). Drought stress influenced sesamin and sesamolin content and polyphenolic components in sesame (Sesamum indicum L.) populations with contrasting seed coat colors. Food Chemistry, 289, 360 ‒ 368. DOI:10.1016/j.foodchem.2019. Search in Google Scholar

Global Market Insights, Inc (2020). Lignans Market revenue to hit $90 million by 2026. Dostupné na: <http://www.globenewswire.com/news-release/2020/03/25/2006051/0/en/Lignans-Market-revenue-to-hit-90-million-by-2026-Says-Global-Market-Insights-Inc.html> Search in Google Scholar

Hano, C., Addi, M., Bensaddek, L., Crônier, D., Baltora-Rosset, S., Doussot, J., Maury, S., Mesnard, F., Chabbert, B., Hawkins, S., and et al. (2006). Differential accumulation of monolignol-derived compounds in elicited flax (Linum usitatissimum) cell suspension cultures. Planta, 223, 975 – 989. DOI:10.1007/s00425-005-0156-1.10.1007/s00425-005-0156-116292660 Search in Google Scholar

Harmatha, J. and Dinan, L. (2003). Biological activities of lignans and stilbenoids associated with plant-insect chemical interactions. Phytochemistry Reviews, 2, 321 – 330. DOI:10.1023/B:PHYT.0000045494.98645.a3.10.1023/B:PHYT.0000045494.98645.a3 Search in Google Scholar

Hata, N., Hayashi, Y., Okazawa, A., Ono, E., Satake, H., and Kobayashi, A. (2012). Effect of photoperiod on growth of the plants, and sesamin content and CYP81Q1 gene expression in the leaves of sesame (Sesamum indicum L.). Environmental and Experimental Botany, 75, 212 – 219. DOI:10.1016/j.envexpbot.2011. Search in Google Scholar

Heldt, H.W. and Heldt, F. (2013). Plant Biochemistry. Elsevier Academic Press: USA, 3rd edition, 2005, 630 p. ISBN 0-12-088391-033. Search in Google Scholar

Hemmati, S., von Heimendahl, C.B., Klaes, M., Alfermann, A.W., Schmidt, T.J., and Fuss, E. (2010). Pinoresinol-lariciresinol reductases with opposite enantiospecificity determine the enantiomeric composition of lignans in the different organs of Linum usitatissimum L. Planta medica, 76(9), 928 ‒ 34. DOI:10.1055/s-0030-1250036.10.1055/s-0030-125003620514607 Search in Google Scholar

Jhala, A.J. and Hall, L.M. (2010). Flax (Linum usitatissimum L.): current uses and future applications. Australian Journal of Basic and Applied Sciences, 4(9), 4304 ‒ 4312. Search in Google Scholar

Kasote, D.M. (2013). Flaxseed phenolics as natural antioxidants. International Food Research Journal, 20(1), 27 ‒ 34. Search in Google Scholar

Khan, I., Khan, M.A., Shehzad, M.A., Ali, A., Mohammad, S., Ali, H., Alyemeni, M.N., and Ahmad, P. (2020). Micro-propagation and production of health promoting lignans in Linum usitatissimum. Plants, 9(6), 728. DOI:10.3390/plants9060728.10.3390/plants9060728735578132526854 Search in Google Scholar

Kuete, V. (2013). Medicinal plant research in Africa. Pharmacology and Chemistry. > eBook ISBN: 9780124059368. Search in Google Scholar

Krajčová, A., Schulzová, V., Hajšlová, J., and Bjelková, M. (2009). Lignans in flaxseed. Czech Journal of Food Sciences, 27, S252 ‒ S255. DOI:10.17221/1062-CJFS.10.17221/1062-CJFS Search in Google Scholar

Kyselka, J., Rabiej, D., Dragoun, M., Kreps, F., Barčová, Z., Němečková, I., Smolková, J., Bjelková, M., Szydlowska-Czerniak, A., Schmidt, Š., Šarman, L., and Filip, V. (2017). Antioxidant and antimicrobial activity of linseed lignans and phenolic acids. European Food Research and Technology, 243, 1633 – 1644. DOI:10.1007/s00217-017-2871-9.10.1007/s00217-017-2871-9 Search in Google Scholar

Li, Y., Wei, J., Fang, J., Lv, W., Ji, Y., Aioub, A.A.A., Zhang, J., and Hu, Z. (2019). Insecticidal activity of four lignans isolated from Phryma leptostachya. Molecules, 24(10), 1976. DOI:10.3390/molecules24101976.10.3390/molecules24101976657257631121976 Search in Google Scholar

Markulin, L., Corbin, C., Renouard, S., Drouet, S., Gutierrez, L., Mateljak, I., Auguin, D., Hano, C., Fuss, E., and Lainé, E. (2019). Pinoresinol-lariciresinol reductases, key to the lignan synthesis in plants. Planta, 249(6), 1695 ‒ 1714. DOI:10.1007/s00425-019-03137-y.10.1007/s00425-019-03137-y30895445 Search in Google Scholar

Milder, I.E., Arts, I.C., van de Putte, B., Venema, D.P., and Hollman, P.C. (2005). Lignan contents of Dutch plant foods: a database including lariciresinol, pinoresinol, secoisolariciresinol and matairesinol. British Journal of Nutrition, 93(3), 393 ‒ 402. DOI:10.1079/bjn20051371.10.1079/BJN20051371 Search in Google Scholar

Mwamba, T.M., Islam, F., Ali, B., Lwalaba, J.L.W., Gill, R.A., Zhang, F., Farooq, M.A., Ali, S., Ulhassan, Z., Huang, Q., Zhou, W., and Wang, J. (2020). Comparative metabolomic responses of low- and high-cadmium accumulating genotypes reveal the cadmium adaptive mechanism in Brassica napus. Chemosphere, DOI:10.1016/j.chemosphere.2020.126308.10.1016/j.chemosphere.2020.12630832135439 Search in Google Scholar

Nadeem, M., Ahmad, W., Zahir, A., Hano, C., and Abbasi, B.H. (2018). Salicylic acid-enhanced biosynthesis of pharmacologically important lignans and neo lignans in cell suspension culture of Linum ussitatsimum L. Engineering in Life Sciences, 19(3), 168‒174. DOI:10.1002/elsc.201800095.10.1002/elsc.201800095699929632624999 Search in Google Scholar

Oomah, B.D. (2001). Flaxseed as a functional food source. Journal of the Science of Food and Agriculture, 81(9), 889 ‒ 894. DOI:10.1002/jsfa.898.10.1002/jsfa.898 Search in Google Scholar

Oros, G. and Kállai, Z. (2019). Phytoanticipins: The Constitutive Defense Compounds as Potential Botanical Fungicides. In Jogaiah, S., Abdelrahman M. (Eds), Bio-active Molecules in Plant Defense. Springer, Cham. DOI:10.1007/978-3-030-27165-7_11.10.1007/978-3-030-27165-7_11 Search in Google Scholar

Paniagua, C., Bilkova, A., Jackson, P., Dabravolski, S., Riber, W., Didi, V., Houser, J., Gigli-Bisceglia, N., Wimmerova, M., Budínská, E., Hamann, T., and Hejatko, J. (2017). Dirigent proteins in plants: modulating cell wall metabolism during abiotic and biotic stress exposure. Journal of Experimental Botany 68(13), 3287 ‒ 3301. DOI:10.1093/jxb/erx141. PMID: 28472349.10.1093/jxb/erx14128472349 Search in Google Scholar

Parikh, M., Maddaford, T.G., Austria, J.A., Aliani, M., Netticadan, T., and Pierce, G.N. (2019). Dietary flaxseed as a strategy for improving human health. Nutrients, 11(5), 1171. DOI:10.3390/nu11051171.10.3390/nu11051171656719931130604 Search in Google Scholar

Preisner, M., Kulma, A., Zebrowski, J., Dymińska, L., Hanuza, J., Arendt, M., Starzycki, M., and Szopa, J. (2014). Manipulating cinnamyl alcohol dehydrogenase (CAD) expression in flax affects fibre composition and properties. BMC Plant Biology, 14, 50.10.1186/1471-2229-14-50394506324552628 Search in Google Scholar

Rajesha, J., Rao, A.R., Madhusudhan, B., and Karunakumar, M. (2010). Antibacterial properties of secoisolareciresinol diglucoside isolated from Indien flaxseed cultivars. Current Trends in Biotechnology and Pharmacy, 4(1), 551 ‒ 560. DOI:10.4014/jmb.1607.07036.10.4014/jmb.1607.0703627713208 Search in Google Scholar

Ramsay, A., Fliniaux, O., Quéro, A., Molinié, R., Demailly, H., Hano, C., Paetz, C., Roscher, A., Grand, E., Kovensky, J., Schneider, B., and Mesnard, F. (2017). Kinetics of the incorporation of the main phenolic compounds into the lignan macromolecule during flaxseed development. Food Chemistry, 217, 1 ‒ 8. DOI:10.1016/j.foodchem.2016. Search in Google Scholar

Rodríguez-García, C., Sánchez-Quesada, C., Toledo, E., Delgado-Rodríguez, M., and Gaforio, J.J. (2019). Naturally lignan-rich foods: A dietary tool for health promotion? Molecules, 24(5), 917. DOI:10.3390/molecules24050917.10.3390/molecules24050917642920530845651 Search in Google Scholar

Sainvitu, P., Nott, K., Gaëtan, R., Blecker, Ch., Jérôme, Ch., Wathelet, J.P., Paquot, M., and Deleu, M. (2012). Structure, properties and obtention routes of flaxseed lignan secoisolariciresinol: A review. Biotechnologie, Agronomie, Société et Environnement, 16, 115 ‒ 124. Search in Google Scholar

Schmidt, T.J., Hemmati, S., Klaes, M., Konuklugil, B., Mohagheghzadeh, A., Ionkova, I., Fuss, E., and Wilhelm Alfermann, A. (2010). Lignans in flowering aerial parts of Linum species--chemodiversity in the light of systematics and phylogeny. Phytochemistry, 71(14 ‒ 15), 1714 ‒ 28. DOI:10.1016/j.phytochem.2010. Search in Google Scholar

Schmidt, T.J., Klaes, M. and Sendker, J. (2012). Lignans in seeds of Linum species. Phytochemistry, 82, 89 ‒ 99. DOI:10.1016/j.phytochem.2012. Search in Google Scholar

Schroeder, F.C., del Campo, M.L., Grant, J.B., Weibel, D.B., Smedley, S.R., Bolton, K.L., Meinwald, J., and Eisner, T. (2006). Pinoresinol: A lignol of plant origin serving for defense in a caterpillar. Proceedings of the National Academy of Sciences, 103, 15497 – 15501. DOI:10.1073/pnas.0605921103.10.1073/pnas.0605921103162285117030818 Search in Google Scholar

Sharma, A., Shahzad, B., Rehman, A., Bhardwaj, R., Landi, M., and Zheng, B. (2019). Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules, 24(13), 2452. DOI:10.3390/molecules24132452.10.3390/molecules24132452665119531277395 Search in Google Scholar

Sicilia, T., Niemeyer, H.B., Honig, D.M., and Metzler, M. (2003). Identification and stereochemical characterization of lignans in flaxseed and pumpkin seeds. Journal of Agricultural and Food Chemistry, 51(5), 1181 ‒ 8. DOI:10.1021/jf0207979.10.1021/jf020797912590454 Search in Google Scholar

Srivastava, S., Gupta, M.M., Prajapati, V., Tripathi, A.K., and Kumar, S. (2001). Sesamin a potent antifeedant principle from Piper mullesua. Phytotherapy Research, 15, 70 – 72. DOI:10.1002/1099-1573(200102)15:1<70:aid-ptr671>3.0.co;2-n. Search in Google Scholar

Suzuki, S., Umezawa, T., and Shimada, M. (2002). Stereo-chemical diversity in lignan biosynthesis of Arctium lappa L. Bioscience Biotechnology and Biochemistry, 66(6), 1262 ‒ 9. DOI:10.1271/bbb.66.1262. PMID: 12162547.10.1271/bbb.66.126212162547 Search in Google Scholar

Syed, R.N., Laurentin, H., Splivallo, R., and Karlovsky, P. (2015). Antifungal properties of extracts of sesame (Sesamum indicum). International Journal of Agriculture and Biology, 17, 575 – 581. DOI:10.17957/IJAB/ Search in Google Scholar

Teponno, R., Kusari, S., and Spiteller, M. (2016). Recent advances in research on lignans and neolignans. Journal Natural Product Reports, 33(9), 1044 ‒ 1092. DOI:10.1039/C6NP00021E>. Search in Google Scholar

Tera, M., Koyama, T., Murata, J., Furukawa, A., Mori, S., Azuma, T., Watanabe, T., Hori, K., Okazawa, A., Kabe, Y., Suematsu, M., Satake, H., Ono, E. and Horikawa, M. (2019). Identification of a binding protein for sesamin and characterization of its roles in plant growth. Scientific Reports, 9, 8631. DOI:10.1038/s41598-020-64237-4.10.1038/s41598-020-64237-4720610932382049 Search in Google Scholar

Touré, A. and Xueming, X. (2010). Flaxseed lignans: Source, biosynthesis, metabolism, antioxidant activity, bio-active components, and health benefits. Food Science and Food Safety, 9, 261 ‒ 269. DOI:10.1111/j.1541-4337.2009.00105.x.10.1111/j.1541-4337.2009.00105.x33467817 Search in Google Scholar

von Heimendahl, C.B., Schäfer, K.M., Eklund, P., Sjöholm, R., Schmidt, T.J., and Fuss, E. (2005). Pinoresinol-lariciresinol reductases with different stereospecificity from Linum album and Linum usitatissimum. Phytochemistry, 66(11), 1254 ‒ 63. DOI:10.1016/j.phytochem.2005.04.026. PMID: 15949826.10.1016/j.phytochem.2005.04.02615949826 Search in Google Scholar

Wang, J., Wu, D., Wang, Y., and Xie, D. (2019). Jasmonate action in plant defense against insects. Journal of Experimental Botany, 70, 3391 – 3400. DOI:10.1093/jxb/erz174.10.1093/jxb/erz17430976791 Search in Google Scholar

War, A.R., Paulraj, M.G., Ahmad, T., Buhroo, A.A., Hussain, B., Ignacimuthu, S., and Sharma, H.C. (2012). Mechanisms of plant defense against insect herbivores. Plant Signaling & Behavior, 7, 1306 – 1320. DOI:10.4161/psb.21663.10.4161/psb.21663349341922895106 Search in Google Scholar

Willför, S.M., Smeds, A.I., and Holmboma, B.R. (2006). Chromatographic analysis of lignans. Journal of Chromatography A, 1112(1 ‒ 2), 64 ‒ 77. DOI:10.1016/j.chroma.2005. Search in Google Scholar

Wu, Y., Wang, H., Wang, Y., Brennan, Ch.S., Brennan, M.A., Qiu, C., and Guo, X. (2021). Comparison of lignans and phenolic acids in different varieties of germinated flaxseed (Linum usitatissimum L.). International Journal of Food Science & technology, 56(1), 196 ‒ 204. DOI:10.1111/ijfs.14619.10.1111/ijfs.14619 Search in Google Scholar

Xu, Y., Vinas, M., Alsarrag, A., Su, L., Pfohl, K., Rohlfs, M., Schäfer, W., Chen, W., and Karlovsky, P. (2019). Bis-naphthopyrone pigments protect filamentous ascomycetes from a wide range of predators. Nature Communications, 10, 3579. DOI:10.1038/s41467-019-11377-5.10.1038/s41467-019-11377-5668772231395863 Search in Google Scholar

Yamauchi, S., Ichikawa, H., Nishiwaki, H., and Shuto, Y. (2015). Evaluation of plant growth regulatory activity of furofuran lignan bearing a 7,90:70,9-diepoxy structure using optically pure (+)- and (−)-enantiomers. Journal of Agriculture and Food Chemistry, 63, 5224 – 5228. DOI:10.1021/acs.jafc.5b01099.10.1021/acs.jafc.5b0109925955149 Search in Google Scholar

Yeung, A.W.K., Tzvetkov, N.T., Balacheva, A.A., Georgieva, M.G., Gan, R.Y., Jozwik, A., Pyzel, B., Horbańczuk, J.O., Novellino, E., Durazzo, A., Lucarini, M., Camilli, E., Souto, E.B., Atanasov, A.G., and Santini, A. (2020). Lignans: Quantitative analysis of the research literature. Frontiers in Pharmacology, 11, 37. DOI:10.3389/fphar.2020.00037.10.3389/fphar.2020.00037702088332116713 Search in Google Scholar

Zálešák, F., Bon, D., and Pospíšil, J. (2019). Lignans and neolignans: Plant secondary metabolites as a reservoir of biologically active substances. Pharmacological Research, 146, 104284. DOI:10.1016/j.phrs.2019.104284.10.1016/j.phrs.2019.10428431136813 Search in Google Scholar

Zeitoun, A.M., Preisner, M., Kulma, A., Dymińska, L., Hanuza, J., Starzycki, M., and Szopa, J. (2014). Does biopolymers composition in seeds contribute to the flax resistance against the Fusarium infection? Biotechnology Progress, 30(5), 992 ‒ 1004. DOI:10.1002/btpr.1965.10.1002/btpr.196525080398 Search in Google Scholar

Zhou, Y., Zheng, J., Li, Y., Xu, D-P., Li, S., Chen, Y-M., and Li, H-B. (2016). Natural polyphenols for prevention and treatment of cancer. Nutrients, 8(8), 515. DOI:10.3390/nu8080515.10.3390/nu8080515499742827556486 Search in Google Scholar

Recommended articles from Trend MD