1. bookVolume 67 (2021): Issue 2 (July 2021)
Journal Details
First Published
06 Jun 2011
Publication timeframe
4 times per year
access type Open Access

Drought Stress in Cereals – A Review

Published Online: 05 Aug 2021
Page range: 47 - 60
Received: 02 Feb 2021
Accepted: 23 Jun 2021
Journal Details
First Published
06 Jun 2011
Publication timeframe
4 times per year

Drought is one of the most important factors that influences plant morphology, biochemistry, and physiology, and finally leads to the decline in crops productivity and seed quality. Climate change, severe changes in water availability together with thermal stresses environment coincide with increasing human population, and to reveal sustainable solutions it is necessary to understand: i) how cereals react to drought, ii) how the tolerance mechanisms are exhibited by the genotype, and iii) which approaches enable to increase the tolerance of crop species against limited water availability. Especially in cereals as in high-quality food sources, it is important to reveal the adaptation mechanisms to rainfall dynamics on arable land and to the prolonged period of drought. This review summarizes current knowledge on the impact of drought on cereals, the mechanisms these crops utilize to cope water scarcity and survive, and the most efficient approaches to improve their drought tolerance.


Abdallah, N.A., Prakash, C.S. and Mchughen A.G. 2015. Genome editing for crop improvement: Challenges and opportunities. GM Crops & Foods, 6, 183 – 205. DOI: 10.1080/21645698.2015.1129937.10.1080/21645698.2015.1129937 Search in Google Scholar

Abid, M., Ali, S., Qi, L.K., Zahoor, R., Tian, Z., Jiang, D., Snider, J.L. and Dai, T. 2018. Physiological and biochemical changes during drought and recovery periods at tillering and jointing stages in wheat (Triticum aestivum L.). Scientific Reports, 4615(8), 1 – 15. DOI:10.1038/s41598-018-21441-7.10.1038/s41598-018-21441-7 Search in Google Scholar

Abobatta, W.F. 2019. Drought adaptive mechanisms of plants – a review. Advances in Agriculture and Environmental Science, 2(1), 62 – 65. DOI:10.30881/aaeoa.00022.10.30881/aaeoa.00022 Search in Google Scholar

Ahmed, R.F., Irfan, M., Shakir, H.A., Khan, M. and Chen, L. 2020. Engineering drought tolerance in plants by modification of transcription and signalling factors. Biotechnology & Biotechnological Equipment, 34, 781 – 789. DOI: 10.1080/13102818.2020.1805359.10.1080/13102818.2020.1805359 Search in Google Scholar

Alghabari, F. and Ihsan, M.Z. 2018. Effects of drought stress on growth, grain filling duration, yield and quality attributes of barley (Hordeum vulgare L.). Bangladesh Journal of Botany, 47(3), 421 – 428. DOI:10.3329/bjb.v47i3.38679.10.3329/bjb.v47i3.38679 Search in Google Scholar

Alghabari, F., Ihsan, M.Z., Hussain, S., Aishia, G., Daur, I. 2015. Effect of Rht alleles on wheat grain yield and quality under high temperature and drought stress during booting and anthesis. Environmental Science and Pollution Research, 22(1), 15506 – 15515. DOI:10.1007/s11356-015-4724-z.10.1007/s11356-015-4724-z Search in Google Scholar

Andersen, M.N., Asch, F., Wu, Y., Jensen, Ch.R., Næsted, H., Mogensen, V.O. and Koch, K.E. 2002. Soluble invertase expression is an early target of drought stress during the critical, abortion-sensitive phase of young ovary development in maize. Plant Physiology, 130(2), 591 – 604. DOI:10.1104/pp.005637.10.1104/pp.005637 Search in Google Scholar

Anjum, S.A., Xie, X., Wang, L., Saleem, M.F., Man, C. and Lei, W. 2011. Morphological, physiological and biochemical responses of plants to drought stress. African Journal of Agricultural Research, 6(9), 2026 – 2032. DOI:10.5897/AJAR10.027. Search in Google Scholar

Araus, J.L., Slafer, G.A., Reynolds, M.P. and Royo, C. 2002. Plan breeding and drought in C3 cereals: What should we breed for? Annals of Botany, 89, 925 – 940. DOI:10.1093/aob/mcf049.10.1093/aob/mcf049 Search in Google Scholar

Atkinson, N.J. and Urwin, P.E. 2012. The interaction of plant biotic and abiotic stresses: from genes to the field. Journal of Experimental Botany, 63(10), 3523 – 3543. DOI:10.1093/jxb/ers100.10.1093/jxb/ers100 Search in Google Scholar

Anwar, A. and Kim, J.-K. 2020. Transgenic breeding approaches for improving abiotic stress tolerance: Recent progress and future perspectives. International Journal of Molecular Sciences, 21, 2695. DOI:10.3390/ijms21082695.10.3390/ijms21082695 Search in Google Scholar

Bonifacio, A., Martins, M.O., Ribeiro, C.W., Fontenele, A.V., Carvalho, F.E.L., Margis-Pinheiro, M., Silveira, J.A.G. 2011. Role of peroxidases in the compensation of cytosolic ascorbate peroxidase knockdown in rice plants under abiotic stress. Plant, Cell & Environment, 34(10), 1705 – 1722. DOI:10.1111/j.1365-3040.2011.02366.x.10.1111/j.1365-3040.2011.02366.x Search in Google Scholar

Carey, C.C., Gorman, C.F. and Rutherford, S. 2006. Modularity and intrinsic evolvability of Hsp90-buffered change. PLOS ONE, 1(1), 1 – 6. DOI:10.1371/journal.pone.0000076.10.1371/journal.pone.0000076 Search in Google Scholar

Caverzan, A., Casassola, A. and Brammer, S.P. 2016. Antioxidant responses of wheat plants under stress. Genetics and Molecular Biology, 39(1), 1 – 6. DOI:10.1590/1678-4685-GMB-2015-0109.10.1590/1678-4685-GMB-2015-0109 Search in Google Scholar

Cheng, L., Wang, Y., He, Q., Li, H., Zhang, X. and Zhang, F. 2016. Comparative proteomics illustrates the complexity of drought resistance mechanisms in two wheat Triticum aestivum L.) cultivars under dehydration and rehydration. BMC Plant Biology, 16(1), 1 – 23. DOI:10.1186/s12870-016-0871-8.10.1186/s12870-016-0871-8 Search in Google Scholar

Choudhary, M., Wani, S.H., Kumar, P., Bagaria, P.K., Rakshit, S., Roorkiwal, M. and Varshney, R.K. 2019. QTLian breeding for climate resilience in cereals: progress and prospects. Functional & Integrative Genomics, 19, 685 – 701. DOI: 10.1007/s10142-019-00684-1.10.1007/s10142-019-00684-1 Search in Google Scholar

Danna, C.H., Bartoli, C.G., Sacco, F., Ingala, L.R., Santa-María, G.E., Guiamet, J.J. and Ugalde, R.A. 2003. Thylakoid-bound ascorbate peroxidase mutant exhibits impaired electron transport and photosynthetic activity. Plant Physiology, 132(4), 2116 – 2125. DOI:10.1104/pp.103.021717.10.1104/pp.103.021717 Search in Google Scholar

Davies, W.J., Kudoyarova, G. and Hartung, W. 2005. Long-distance ABA signaling and its relation to other signaling pathways in the detection of soil drying and the mediation of the plant´s response to drought. Journal of Plant Growth Regulation, 24, 285 – 295. DOI:10.1007/s00344-005-0103-1.10.1007/s00344-005-0103-1 Search in Google Scholar

Daszkowska-Golec, A. and Szarejko, I. 2013. Abiotic Stress - Plant responses and applications in agriculture: The molecular basis of ABA-mediated plant response to drought. Rijeka: InTech, 418 pp. ISBN 978-953-51-1024-8. Search in Google Scholar

Di Donato, M.D. and Geisler, M. 2019. HSP90 and co-chaperones: a multitaskers’ view on plant hormone biology. FEBS Letters, 593(13), 1415 – 1430. DOI:10.1002/1873-3468.13499.10.1002/1873-3468.13499 Search in Google Scholar

Dikilitas, M., Simsek, E. and Roychoudhury, A. 2020. Modulation of abiotic stress tolerance through hydrogen peroxide. Chapter 7. Protective Chemical Agents in the Amelioration of Plant Abiotic Stress, 147 – 173. USA: John Wiley & Sons, Ltd. DOI:10.1002/9781119552154.ch7.10.1002/9781119552154.ch7 Search in Google Scholar

Dolferus, R., Ji, X. and Richards, R.A. 2011. Abiotic stress and control of grain number in cereals. Plant Science, 181(4), 331 – 341. DOI:10.1016/j.plantsci.2011. Search in Google Scholar

Earl, H.J. and Davis, R.F. 2003. Effect of drought stress on leaf and whole canopy radiation use efficiency and yield of maize. Agronomy Journal, 95(3), 688 – 696. DOI:10.2134/agronj2003.0688.10.2134/agronj2003.6880 Search in Google Scholar

FAO. 2013. Statistical yearbook 2013. Rome: Food and Agriculture Organization of the United Nations, 307 pp. ISBN 978-92-5-107396-4. Search in Google Scholar

FAO. 2018. The impact of disasters and crises on agriculture and food security. Rome: Food and Agriculture Organization of the United Nations, 168 pp. ISBN: 978-92-5-130359-7 Search in Google Scholar

Farooq, M, Wahid, A., Kobayashi, N., Fujita, D. and Basra, S.M.A. 2009. Plant drought stress: effects, mechanisms and management. Agronomy for Sustainable Development, 29(1), 185 – 212. DOI:10.1051/agro:2008021.10.1051/agro:2008021 Search in Google Scholar

Fedoroff, N., Battisti, D.S., Beachy, R.N., Cooper, P.J.M., Fischhoff, D.A., Hodges, C.N., Knauf, V.C., Lobell, D., Mazur, B.J., Molden, D., Reynolds, M.P., Ronald, P.C., Rosegrant, M.W., Sanchez, P.A., Vonshak, A. and Zhu, J-K. 2010. Radically rethinking agriculture for the 21st century. Science, 327(5967), 833 – 834. DOI:10.1126/science.1186834.10.1126/science.1186834 Search in Google Scholar

Gao, S., Xu, H., Cheng, X., Chen, M., Xu, Z., Li, L., Ye, X., Du, L., Hao, X. and Ma, Y. 2005. Improvement of wheat drought and salt tolerance by expression of a stress inducible transcription factor GmDREB of soybean (Glycine max). Chinese Science Bulletin, 50, 2714 – 2723. DOI: 10.1007/BF02899641.10.1007/BF02899641 Search in Google Scholar

Garg, B.K. 2003. Nutrient uptake and management under drought: nutrient-moisture interaction. Current Agriculture, 27(1/2), 1 – 8. Search in Google Scholar

Ge, P., Hao, P., Cao, M., Guo, G., Lv, D., Subburaj, S., Li, X., Yan, X., Xiao, J., Ma, W. and Yan, Y. 2013. iTRAQ-based quantitative proteomic analysis reveals new metabolic pathways of wheat seedling growth under hydrogen peroxide stress. Proteomics, 13(20), 3046 – 3058. DOI:10.1002/pmic.201300042.10.1002/pmic.201300042 Search in Google Scholar

Ghatak, A., Chaturvedi, P. and Weckwerth, W. 2017. Cereal crop proteomics: systemic analysis of crop drought stress responses towards marker-assisted selection breeding. Frontiers in Plant Science, 8(757), 1 – 25. DOI:10.3389/fpls.2017.00757.10.3389/fpls.2017.00757 Search in Google Scholar

Gill, S.S., Anjum, N.A., Gill, R., Yadav, S., Hasanuzzaman, M., Fujita, M., Mishra, P., Sabat, S.C. and Tuteja, N. 2015. Su-peroxide dismutase – Mentor of abiotic stress tolerance in crop plants. Environmental Science and Pollution Research, 22, 10375 – 10394. DOI:10.1007/s11356-015-4532-5.10.1007/s11356-015-4532-5 Search in Google Scholar

González, F.F., Capella, M., Ribichich, K.K., Curífn, F., Giacomelli, J.J., Ayala, F., Watson, G., Otegui, M.E. and Chan, R.L. 2019. Field-grown transgenic wheat expressing the sunflower gene HaHB4 significantly outyields the wild type. Journal of Experimental Botany, 70, 1669 – 1681. DOI:10.1093/jxb/erz037.10.1093/jxb/erz037 Search in Google Scholar

Gregorová, Z., Kováčik, J., Klejdus, B., Maglovski, M., Kuna, R., Hauptvogel, P. and Matušíková, I. 2015. Drought – induced responses of physiology, metabolites, and PR proteins in Triticum aestivum. Journal of Agricultural and Food Chemistry, 63(37), 8125 – 8133. DOI:10.1021/acs. jafc.5b02951. Search in Google Scholar

Guo, H., Zhang, H., Wang, G., Wang, Ch., Wang, Y., Liu, X. and Ji, W. 2021. Identification and expression analyses of heat-shock proteins in wheat infected with powdery mildew and stripe rust. The Plant Genome, e20092, 1 – 15. DOI:10.1002/tpg2.2009210.1002/tpg2.20092 Search in Google Scholar

Hamim, 2005. Photosynthesis of C3 and C4 species in response to increased CO2 concentration and drought stress. Hayati, 12(4), 131 – 138.10.1016/S1978-3019(16)30340-0 Search in Google Scholar

Han, H., Tian, Z., Fan, Y., Cui, Y., Cai, J., Jiang, D., Cao, W. and Dai, T. 2015. Water-deficit treatment followed by re-watering stimulates seminal root growth associated with hormone balance and photosynthesis in wheat (Triticum aestivum L.) seedlings. Plant Growth Regulation, 77(2), 201 – 210. DOI: 10.1007/s10725-015-0053-y.10.1007/s10725-015-0053-y Search in Google Scholar

Hanin, M., Brini, F., Ebel, Ch., Toda, Y., Takeda, S. and Masmoudi, K. 2011. Plant dehydrins and stress tolerance: versatile proteins for complex mechanisms. Plant Signaling & Behavior, 6(10), 1503 – 1509. DOI:10.4161/psb.6.10.17088.10.4161/psb.6.10.17088 Search in Google Scholar

Houshmand, S., Arzani, A. and Mirmohammadi-Maibody, S.A.M. 2014. Effects of salinity and drought stress on grain quality of durum wheat. Communications in Soil Science and Plant Analysis, 45(3), 297 – 308. DOI: 10.1080/00103624.2013.861911.10.1080/00103624.2013.861911 Search in Google Scholar

Izanloo, A., Condon, A.G., Langridge, P., Tester, M. and Schnurbusch, T. 2008. Different mechanisms of adaptation to cyclic water stress in two South Australian bread wheat cultivars. Journal of Experimental Botany, 59(12), 3327 – 3346. DOI:10.1093/jxb/ern199.10.1093/jxb/ern199 Search in Google Scholar

Jacob, P., Hirt, H. and Bendahmane, A. 2017. The heat-shock protein/chaperone network and multiple stress resistance. Plant Biotechnology Journal, 15(4), 405 – 414. DOI: 10.1111/pbi.12659.10.1111/pbi.12659 Search in Google Scholar

Jansen, G., Schliephake, E., Kopahnke, D. and Ordon, F. 2013. Effect of N-fertilization, fungicide treatment, seed density and abiotic stress factors on the total ß-glucan content of six-rowed winter barley (Hordeum vulgare L.). Journal of Applied Botany and Food Quality, 86(1), 180 – 184. DOI: 10.5073/JABFQ.2013.086.024. Search in Google Scholar

Javed, T., Shabbir, R., Ali, A., Afzal, I., Zaheer, U. and Gao, S.-J. 2020. Transcription factors in plant stress responses: Challenges and potential for sugarcane improvement. Plants, 9, 491. DOI:10.3390/plants9040491.10.3390/plants9040491 Search in Google Scholar

Jha, S. 2019. Transgenic approaches for enhancement of salinity stress tolerance in plants. In Singh, S.P., Upadhyay, S.K., Pandey, A., Kumar, S. (Eds.) Molecular Approaches in Plant Biology and Environmental Challenges, Energy, Environment, and Sustainability. Singapore: Springer Nature, 266 – 322. ISBN 978-981-15-0692-510.1007/978-981-15-0690-1_14 Search in Google Scholar

Jiang, W., Yang, L., Yiqin, H., Zhang, H., Li, W., Chen, H., Ma, D. and Yin, J. 2019. Genome-wide identification and transcriptional expression analysis of superoxide dismutase (SOD) family in wheat (Triticum aestivum). Peer J, 19(7), 1 – 26. DOI:10.7717/peerj.8062.10.7717/peerj.8062 Search in Google Scholar

Kao, CH. 2014. Role of hydrogen peroxide in rice plants. Crop, Environment & Bioinformatics, 11(3), 1 – 10. DOI:20.1093/jxb/ert375. Search in Google Scholar

Kapoor, D., Bhardwaj, S., Landi, M., Sharma, A., Ramakrishnan, M. and Sharma, A. 2020. The Impact of drought in plant metabolism: How to exploit tolerance mechanisms to increase crop production. Applied Sciences, 10(16), 1 – 19. DOI:10.3390/app10165692.10.3390/app10165692 Search in Google Scholar

Khadka, K., Earl, H.J., Raizada, M.N. and Navabi, A. 2020. A physio-morphological trait-based approach for breeding drought tolerant wheat. Frontiers in Plant Science, 11, article: 715. DOI:10.3389/FPLS.2020.00715.10.3389/fpls.2020.00715 Search in Google Scholar

Khan, N., Ali, S., Tariq, H., Latif, S., Yasmin, H., Mehmood, A. and Shahid, M.A. 2020. Water conservation and plant survival strategies of Rhizobacteria under drought stress. Agronomy, 10, 1683. DOI:10.3390/agronomy10111683.10.3390/agronomy10111683 Search in Google Scholar

Khan, S., Anwar, S., Yu, S., Sun, M., Yang, Z. and Gao, Z.-Q. 2019. Development of drought-tolerant transgenic wheat: Achievements and limitations. International Journal of Molecular Sciences, 20, 3350. DOI:10.3390/ijms20133350.10.3390/ijms20133350 Search in Google Scholar

Klimešová, J., Holková, L. and Středa, T. 2017. The expression of dehydrin genes and the intensity of transpiration in drought-stressed maize plants. Cereal Research Communications, 45(3), 355 – 368. DOI:10.1556/0806.45.2017.017.10.1556/0806.45.2017.017 Search in Google Scholar

Kole, C., Muthamilarasan, M., Henry, R. et al. 2015. Application of genomics-assisted breeding for generation of climate resilient crops: progress and prospects. Frontiers in Plant Science, 6, article: 563. DOI:10.3389/fpls.2015.00563.10.3389/fpls.2015.00563 Search in Google Scholar

Kumar, A., Sharma, S., Chunduri, V. et al. Genome-wide identification and characterization of heat shock protein family reveals role in development and stress conditions in Triticum aestivum L. Scientific Reports, 10(7858). DOI:10.1038/s41598-020-64746-2.10.1038/s41598-020-64746-2 Search in Google Scholar

Lamaoui, M., Jemo, M., Datla, R. and Bekkaoui, F. 2018. Heat and drought stresses in crops and approaches for their mitigation. Frontiers in Chemistry, 6, article: 26. DOI:10.3389/fchem.2018.00026.10.3389/fchem.2018.00026 Search in Google Scholar

Li, Y.F., Wu, Y., Hernandez-Espinosa, N. and Peña, R.J. 2013. Heat and drought stress on durum wheat: Responses of genotypes, yield and quality parameters. Journal of Cereal Science, 57(3), 398 – 404. DOI:10.1016/j.jcs.2013. Search in Google Scholar

Luna, C.M., Pastori, G.M., Driscoll, S., Groten, K., Bernard, S. and Foyer, Ch.H. 2005. Drought controls on H2O2 accumulation, catalase (CAT) activity and CAT gene expression in wheat. Journal of Experimental Botany, 56(411), 417 – 423. DOI:10.1093/jxb/eri039.10.1093/jxb/eri039 Search in Google Scholar

Magallanes-López, A.M., Ammar, K., Morales-Dorantes, A., González-Santoyo, H., Crossa, C. and Guzmán, C. 2017. Grain quality traits of commercial durum wheat varieties and their relationships with drought stress and glutenins composition. Journal of Cereal Science, 75(1), 1 – 9. DOI: 10.1016/j.jcs.2017. Search in Google Scholar

Mitra, J. 2001. Genetics and genetic improvement of drought resistance in crop plants. Current Science, 80(6), 758 – 763. Search in Google Scholar

Napolean, T., Kaul, J., Mukri, G. and Mittal, S. 2018. Genomics-enabled next-generation breeding approaches for developing system-specific drought tolerant hybrid in maize. In Luo, L., Mei, H., Tuberosa, R., Nguyen, H.T. and Lu, B. (Eds.) Crop Breeding for Drought Resistance. Lausanne: Frontiers Media, pp. 200 – 221. DOI:10.3389/fpls.2018.00361.10.3389/fpls.2018.00361 Search in Google Scholar

Ni, Z., Li, H., Zhao, Y., Peng, H., Hu, Z., Xin, M. and Sun, Q. 2018. Genetic improvement of heat tolerance in wheat: Recent progress in understanding the underlying molecular mechanisms. The Crop Journal, 6(1), 32 – 41. DOI: 10.1016/j.cj.2017. Search in Google Scholar

Nuttall, J.G., O’leary, G.J., Panozzo, J.F., Walker, C.K., Barlow, K.M. and Fitzgerald, G.J. 2017. Models of grain quality in wheat – a review. Field Crops Research, 202(12), 136 – 145. DOI:10.1016/j.fcr.2015. Search in Google Scholar

Oladosu, Y., Rafii, M.Y., Samuel, C., Fatai, A., Magaji, U., Kareem, I., Kamarudin, Z.S., Muhammad, I. and Kolapo, K. 2019. Drought resistance in rice from conventional to molecular breeding: A review. International Journal of Molecular Sciences, 20, 3519. DOI:10.3390/ijms20143519.10.3390/ijms20143519 Search in Google Scholar

Osakabe, Y., Osakabe, K., Shinozaki, K. and Tran, L.S.P. 2014. Response of plants to water stress. Frontiers of Plant Science, 5(86), 1 – 8. DOI:10.3389/fpls.2014.00086.10.3389/fpls.2014.00086 Search in Google Scholar

Pang, Y., Liu, C., Wang, D. et al. 2020. High-resolution genome-wide association study identifies genomic regions and candidate genes for important agronomic traits in wheat. Molecular Plant, 13(9), 1311 – 1327. DOI:10.1016/j. molp.2020.07.008. Search in Google Scholar

Parkash, V. and Singh, S. 2020. A review on potential plant-based water stress indicators for vegetable crops. Sustainability, 12(10), 3945. DOI:10.3390/su12103945.10.3390/su12103945 Search in Google Scholar

Paul, S. and Roychoudhury, A. 2018. Transgenic plants for improved salinity and drought tolerance. In Gosal, S.S. and Wani, S.H. (Eds.) Biotechnologies of Crop Improvement, vol. 2. New York City: Springer International Publishing AG, pp. 141 – 181. ISBN 978-3-319-90649-2. Search in Google Scholar

Petrov, V.D. and Van Breusegem, F. 2012. Hydrogen peroxide – a central hub for information flow in plant cells. AoB Plants, 2012(4), 1 – 13. DOI:10.1093/aobpla/pls014.10.1093/aobpla/pls014 Search in Google Scholar

Prasad, P.V.V., Bheemanahalli, R. and Jagadish, S.V.K. 2017. Field crops and the fear of heat stress – Opportunities, challenges, and future directions. Field Crops Research, 200(1), 114 – 121. DOI:10.1016/j.fcr.2016. Search in Google Scholar

Reddy, A.R., Chaitanya, K.V. and Vivekanandan, M. 2004. Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. Journal of Plant Physiology, 161(11), 1189 – 1202. DOI:10.1016/j.jplph.2004. Search in Google Scholar

Samarah, N.H. 2005. Effects of drought stress on growth and yield of barley. Agronomy for Sustainable Development, 25, (1), 145 – 149. DOI:10.1051/agro:2004064.10.1051/agro:2004064 Search in Google Scholar

Saradadevi, R., Bramley, H., Palta, J.A., Edwards, E., Siddique, K.H.M. 2015. Root biomass in the upper layer of the soil profile is related to the stomatal response of wheat as the soil dries. Functional Plant Biology, 43(1), 62 – 74. DOI: 10.1071/FP15216.10.1071/FP15216 Search in Google Scholar

Saradadevi, R., Palta, J.A. and Siddique, K.H.M. 2017. ABA-mediated stomatal response in regulating water use during the development of terminal drought in wheat. Frontiers in Plant Science, 8(7), 1 – 14. DOI:10.3389/fpls.2017.01251.10.3389/fpls.2017.01251 Search in Google Scholar

Savin, R., Stone, P.J., Nicolas, M.E. and Wardlaw, I.F. 1997. Grain growth and malting quality of barley. 1. Effects of heat stress and moderately high temperature. Australian Journal of Agricultural Research, 48(5), 615 – 624. DOI: 10.1071/A96064.10.1071/A96064 Search in Google Scholar

Senapati, N., Stratonovitch, P., Paul, M.J., Semenov, M.A. 2018. Drought tolerance during reproductive development is important for increasing wheat yield potential under climate change in Europe. Journal of Experimental Botany, 69(13), 1 – 12. DOI:10.1093/jxb/ery226.10.1093/jxb/ery226 Search in Google Scholar

Siddiqui, M.N., Mostofa, M.G., Akter, M.M., Srivastava, A.K., Sayed, M.A., Hasan, M.S. and Tran, L.S. 2017. Impact of salt-induced toxicity on growth and yield-potential of local wheat cultivars: oxidative stress and ion toxicity are among the major determinants of salt-tolerant capacity. Chemosphere, 187(1), 385 – 394. DOI:10.1016/j.chemo-sphere.2017.08.07. Search in Google Scholar

Singh, J. and Thakur, J.K. 2018. Photosynthesis and abiotic stress in plants. Biotic and Abiotic Stress Tolerance in Plants. Singapore: Springer, pp. 27 – 46. ISBN 978-981-10-9029-510.1007/978-981-10-9029-5_2 Search in Google Scholar

ŠKODÁČEK, Z. and PRÁŠIL, I.T. 2011. New possibilities for research of barley (Hordeum vulgare L.) drought resistance. Úroda, 59(8), 24 – 29. Search in Google Scholar

Souza, R.P., Machado, E.C., Silva, J.A.B., Lagôaa, A.M.M.A. and Silveira, J.A.G. 2004. Photosynthetic gas exchange, chlorophyll fluorescence and some associated metabolic changes in cowpea (Vigna unguiculata) during water stress and recovery. Environmental and Experimental Botany, 51(1), 45 – 56. DOI:10.1016/S0098-8472(03)00059-5.10.1016/S0098-8472(03)00059-5 Search in Google Scholar

Swindell, W.R., Huebner, M., Weber, A.P. 2007. Transcriptional profiling of Arabidopsis heat shock proteins and transcription factors reveals extensive overlap between heat and non-heat stress response pathways. BMC Genomics, 22, 8, 1 – 15. DOI:10.1186/1471-2164-8-125.10.1186/1471-2164-8-125 Search in Google Scholar

Tatar, O. and Gevrek, M.N. 2008. Influence of water stress on proline accumulation, lipid peroxidation and water content of wheat. Asian Journal of Plant Science, 7, 409 – 412. DOI: 10.3923/ajps.2008.409.41210.3923/ajps.2008.409.412 Search in Google Scholar

Thomas, W.T.B. 2015. Drought-resistant cereals: impact on water sustainability and nutritional quality. Proceedings of the Nutrition Society, 74(3), 191 – 197. DOI:10.1017/S0029665115000026.10.1017/S0029665115000026 Search in Google Scholar

Tuberosa, R. and Salvi, S. 2006. Genomics-based approaches to improve drought tolerance of crops. Trends in Plant Science, 11(8), 405 – 412. DOI:10.1016/j.tplants.2006. Search in Google Scholar

Vílchez, J.I., García-Fontana, C., Román-Naranjo, D., González-López, J. and Manzanera, M.O. 2016. Plant drought tolerance enhancement by trehalose production of desiccation-tolerant microorganisms. Frontiers in Microbiology, 7, 1577. DOI:10.3389/fmicb.2016.01577.10.3389/fmicb.2016.01577 Search in Google Scholar

Vítámvás, P., Kosová, K., Musilová, J., Holková, L., Mařik, P., Smutná, P., Klíma, M. and Prášil, I.T. 2019. Relationship between dehydrin accumulation and winter survival in winter wheat and barley grown in the field. Frontiers in Plant Science, 10(7), 1 – 11. DOI:10.3389/fpls.2019.00007.10.3389/fpls.2019.00007 Search in Google Scholar

Wahid, A., Perveen, M., Gelani, S. and Basra, S.M.A. 2007. Pretreatment of seed with H2O2 improves salt tolerance of wheat seedlings by alleviation of oxidative damage and expression of stress proteins. Journal of Plant Physiology, 164(3), 283 – 294. DOI:10.1016/j.jplph.2006. Search in Google Scholar

Wang, J., Vanga, S.K., Saxena, R., Orsat, V., RaghavaN, V. 2018. Effect of climate change on the yield of cereal crops: A review. Climate, 6(2), 1–19. DOI:10.3390/cli6020041.10.3390/cli6020041 Search in Google Scholar

Wang, W., Vinocur, B. and Altman, A. 2003. Plant responses to drought, salinity, and extreme temperatures: towards genetic engineering for stress tolerance. International Journal of Plant Biology, 218(1), 1 – 14. DOI:10.1007/s00425-003-1105-5.10.1007/s00425-003-1105-5 Search in Google Scholar

Ward, J.K., Tissue, D.T., Thomas, R.B., Strain, B.R. 1999. Comparative responses of model C3 and C4 plants to drought in low and elevated CO2. Global Change Biology, 5, 857 – 867. DOI:10.1046/j.1365-2486.1999.00270.x.10.1046/j.1365-2486.1999.00270.x Search in Google Scholar

Wardlaw, I.F. and Willenbrink, J. 2000. Mobilization of fructan reserves and changes in enzyme activities in wheat stems correlate with water stress during kernel filling. New Phytologist, 148(3), 413 – 422. DOI:10.1046/j.1469-8137.2000.00777.x.10.1046/j.1469-8137.2000.00777.x Search in Google Scholar

Zenda, T., Liu, S. and Duan, H. 2020. Adapting cereal grain crops to drought stress: 2020 and Beyond [Online First], IntechOpen, DOI:10.5772/intechopen.93845. Available from: https://www.intechopen.com/online-first/adapting-cereal-grain-crops-to-drought-stress-2020-and-beyond10.5772/intechopen.93845 Search in Google Scholar

Zhai, C.Z., Zhao, L., Yin, L.J., Chen, M., Wang, Q.Y., Li, L.Ch., Xu, Z.S. and MA, Y.Z. 2013. Two wheat glutathione peroxidase genes whose products are located in chloroplasts improve salt and H2O2 tolerances in Arabidopsis. PLOS ONE, 8(10), 1 – 13. DOI:10.1371/journal.pone.0073989.10.1371/journal.pone.0073989 Search in Google Scholar

Zhou, H., Hussain, S.S., Hackenberg, M., Bazanova, N., Eini, O., Li, J., Gustafson, P. and Shi, B. 2018. Identification and characterisation of a previously unknown drought tolerance-associated microRNA in barley. Plant Journal, 95, 138 – 149. DOI:10.1111/tpj.13938.10.1111/tpj.13938 Search in Google Scholar

Zhou, Y., Lam, H.M. and Zhang, J. 2007. Inhibition of photosynthesis and energy dissipation induced by water and high light stresses in rice. Journal of Experimental Botany, 58(5), 1207 – 1217. DOI:10.1093/jxb/erl291.10.1093/jxb/erl291 Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo