Open Access

Characterization of Dissimilar Al-Cu BFSW Welds; Interfacial Microstructure, Flow Mechanism and Intermetallics Formation


Cite

1. Mehta, K.P.; Badheka, V.J. A review on dissimilar friction stir welding of copper to aluminum: Process, properties, and variants. Materials and Manufacturing Processes 2016, 31, 233-254.10.1080/10426914.2015.1025971Search in Google Scholar

2. Sharma, N.; SIDDIQUEE, A.N. Friction stir welding of aluminum to copper—an overview. Transactions of Nonferrous Metals Society of China 2017, 27, 2113-2136.10.1016/S1003-6326(17)60238-3Search in Google Scholar

3. Fonda, R.; Knipling, K. Texture development in friction stir welds. Science and Technology of Welding and Joining 2011, 16, 288-294.10.1179/1362171811Y.0000000010Search in Google Scholar

4. Xue, P.; Ni, D.; Wang, D.; Xiao, B.; Ma, Z. Effect of friction stir welding parameters on the microstructure and mechanical properties of the dissimilar al–cu joints. Materials Science and Engineering: A 2011, 528, 4683-4689.10.1016/j.msea.2011.02.067Search in Google Scholar

5. Threadgill, P.; Leonard, A.; Shercliff, H.; Withers, P. Friction stir welding of aluminium alloys. International Materials Reviews 2009, 54, 49-93.10.1179/174328009X411136Search in Google Scholar

6. Thomas, W.; Nicholas, E.; Needham, J.; Murch, M.; Temple-Smith, P.; Dawes, C. Friction stir butt welding, international patent application no. PCT/GB92 Patent application 1991.Search in Google Scholar

7. Thomas, W.; Nicholas, E. Friction stir welding for the transportation industries. Materials & Design 1997, 18, 269-273.10.1016/S0261-3069(97)00062-9Search in Google Scholar

8. Fuse, K.; Badheka, V. Bobbin tool friction stir welding: A review. Science and Technology of Welding and Joining 2019, 24, 277-304.10.1080/13621718.2018.1553655Search in Google Scholar

9. Wang, G.-Q.; Zhao, Y.-H.; Tang, Y.-Y. Research progress of bobbin tool friction stir welding of aluminum alloys: A review. Acta Metallurgica Sinica (English Letters), 1-17.Search in Google Scholar

10. Tamadon, A.; Pons, D.J.; Clucas, D.; Sued, K. Internal material flow layers in AA6082-T6 butt-joints during bobbin friction stir welding. Metals 2019, 9, 1059.10.3390/met9101059Search in Google Scholar

11. Tamadon, A.; Pons, D.; Sued, K.; Clucas, D. Thermomechanical grain refinement in AA6082-T6 thin plates under bobbin friction stir welding. Metals 2018, 8, 375.10.3390/met8060375Search in Google Scholar

12. Tamadon, A.; Pons, D.J.; Clucas, D.; Sued, K. Texture evolution in aa6082-t6 BFSW welds: Optical microscopy and ebsd characterisation. Materials 2019, 12, 3215.10.3390/ma12193215680405131581446Search in Google Scholar

13. Sued, M.; Tamadon, A.; Pons, D. Material flow visualization in bobbin friction stir welding by analogue model. Proceedings of Mechanical Engineering Research Day 2017, 2017, 1-2.Search in Google Scholar

14. Tamadon, A.; Pons, D.; Sued, K.; Clucas, D. Development of metallographic etchants for the microstructure evolution of AA6082-T6 BFSW welds. Metals 2017, 7, 423.10.3390/met7100423Search in Google Scholar

15. Tamadon, A.; Pons, D.; Sued, K.; Clucas, D. Formation mechanisms for entry and exit defects in bobbin friction stir welding. Metals 2018, 8, 33.10.3390/met8010033Search in Google Scholar

16. Sued, M.K. Fixed bobbin friction stir welding of marine grade aluminium. Ph.D. Thesis, University of Canterbury, Christchurch, New Zealand, 2015.Search in Google Scholar

17. Thomas, W.; Wiesner, C.; Marks, D.; Staines, D. Conventional and bobbin friction stir welding of 12% chromium alloy steel using composite refractory tool materials. Science and Technology of Welding and Joining 2009, 14, 247-253.10.1179/136217109X415893Search in Google Scholar

18. Cui, L.; Yang, X.; Zhou, G.; Xu, X.; Shen, Z. Characteristics of defects and tensile behaviors on friction stir welded AA6061-T4 T-joints. Materials Science and Engineering: A 2012, 543, 58-68.10.1016/j.msea.2012.02.045Search in Google Scholar

19. Pal, S.; Phaniraj, M.P. Determination of heat partition between tool and workpiece during FSW of SS 304 using 3D CFD modeling. Journal of Materials Processing Technology 2015, 222, 280-286.10.1016/j.jmatprotec.2015.03.015Search in Google Scholar

20. Hilgert, J.; Dos Santos, J.; Huber, N. Shear layer modelling for bobbin tool friction stir welding. Science and Technology of Welding and Joining 2012, 17, 454-459.10.1179/1362171812Y.0000000034Search in Google Scholar

21. Hilgert, J.; Schmidt, H.; Dos Santos, J.; Huber, N. Thermal models for bobbin tool friction stir welding. Journal of Materials Processing Technology 2011, 211, 197-204.10.1016/j.jmatprotec.2010.09.006Search in Google Scholar

22. Tamadon, A.; Pons, D.; Sued, M.; Clucas, D.; Wong, E. In Analogue modelling of bobbin tool friction stir welding, Proceedings of the International Conference on Innovative Design and Manufacturing (ICIDM2016), Auckland, New Zealand, 24-26 January 2016, 2016; Auckland, New Zealand.Search in Google Scholar

23. Tamadon, A.; Pons, D.; Sued, M.; Clucas, D.; Wong, E. In Preparation of plasticine material for analogue modelling, Proceedings of the International Conference on Innovative Design and Manufacturing (ICIDM2016), Auckland, New Zealand, 24-26 January 2016, 2016; Auckland, New Zealand.Search in Google Scholar

24. Colligan, K. Material flow behavior during friction welding of aluminum. Welding Journal 1999, 75, 229-237.Search in Google Scholar

25. Fonda, R.; Reynolds, A.; Feng, C.; Knipling, K.; Rowenhorst, D. Material flow in friction stir welds. Metallurgical and Materials Transactions A 2013, 44, 337-344.10.1007/s11661-012-1460-6Search in Google Scholar

26. Hilgert, J.; Hütsch, L.L.; dos Santos, J.; Huber, N. In Material flow around a bobbin tool for friction stir welding, Excerpt from the Proceedings of the COMSOL Conference, 2010.Search in Google Scholar

27. Liechty, B.; Webb, B. Modeling the frictional boundary condition in friction stir welding. International Journal of Machine Tools and Manufacture 2008, 48, 1474-1485.10.1016/j.ijmachtools.2008.04.005Search in Google Scholar

28. He, X.; Gu, F.; Ball, A. A review of numerical analysis of friction stir welding. Progress in Materials Science 2014, 65, 1-66.10.1016/j.pmatsci.2014.03.003Search in Google Scholar

29. Trueba, L.; Torres, M.A.; Johannes, L.B.; Rybicki, D. Process optimization in the self-reacting friction stir welding of aluminum 6061-T6. International Journal of Material Forming 2018, 11, 559-570.10.1007/s12289-017-1365-4Search in Google Scholar

30. Shrivastava, A.; Pfefferkorn, F.E.; Duffie, N.A.; Ferrier, N.J.; Smith, C.B.; Malukhin, K.; Zinn, M. Physics-based process model approach for detecting discontinuity during friction stir welding. The International Journal of Advanced Manufacturing Technology 2015, 79, 605-614.10.1007/s00170-015-6868-xSearch in Google Scholar

31. Argesi, F.B.; Shamsipur, A.; Mirsalehi, S.E. Dissimilar joining of pure copper to aluminum alloy via friction stir welding. Acta Metallurgica Sinica (English Letters) 2018, 31, 1183-1196.10.1007/s40195-018-0741-5Search in Google Scholar

32. Wahid, M.A.; Siddiquee, A.N.; Khan, Z.A.; Asjad, M. Friction stir welds of al alloy-cu: An investigation on effect of plunge depth. Archive of Mechanical Engineering 2016, 63, 619-634.10.1515/meceng-2016-0035Search in Google Scholar

33. Moradi, M.M.; Aval, H.J.; Jamaati, R. Effect of tool pin geometry and weld pass number on microstructural, natural aging and mechanical behaviour of sic-incorporated dissimilar friction-stir-welded aluminium alloys. Sādhanā 2019, 44, 9.10.1007/s12046-018-0997-5Search in Google Scholar

34. Gharavi, F.; Ebrahimzadeh, I.; Amini, K.; Sadeghi, B.; Dariya, P. Effect of welding heat input on the microstructure and mechanical properties of dissimilar friction stir-welded copper/brass lap joint. Materials Research 2019, 22.10.1590/1980-5373-mr-2018-0599Search in Google Scholar

35. Ting, P.L.; Tsai, C.Y.; Chiu, L.H.; Cheng, C.P. In Tensile strength and metallurgical analysis in anodized al/cu joint using friction stir welding, Key Engineering Materials, 2015; Trans Tech Publ: pp 490-495.10.4028/www.scientific.net/KEM.656-657.490Search in Google Scholar

36. Tamadon, A.; Pons, D.J.; Clucas, D. AFM characterization of stir-induced micro-flow features within the AA6082-t6 BFSW welds. Technologies 2019, 7, 80.10.3390/technologies7040080Search in Google Scholar

37. Barcellona, A.; Buffa, G.; Fratini, L.; Palmeri, D. On microstructural phenomena occurring in friction stir welding of aluminium alloys. Journal of Materials Processing Technology 2006, 177, 340-343.10.1016/j.jmatprotec.2006.03.192Search in Google Scholar

38. Fonda, R.; Bingert, J. Texture variations in an aluminum friction stir weld. Scripta Materialia 2007, 57, 1052-1055.10.1016/j.scriptamat.2007.06.068Search in Google Scholar

39. Fonda, R.; Bingert, J.; Colligan, K. Development of grain structure during friction stir welding. Scripta Materialia 2004, 51, 243-248.10.1016/j.scriptamat.2004.04.017Search in Google Scholar

40. Tamadon, A.; Pons, D.J.; Clucas, D. Structural anatomy of tunnel void defect in bobbin friction stir welding, elucidated by the analogue modelling. Applied System Innovation 2020, 3, 2.10.3390/asi3010002Search in Google Scholar

41. Garg, A.; Raturi, M.; Bhattacharya, A. Influence of additional heating in friction stir welding of dissimilar aluminum alloys with different tool pin profiles. The International Journal of Advanced Manufacturing Technology, 1-21.Search in Google Scholar

42. Wiedenhoft, A.G.; Amorim, H.J.d.; Rosendo, T.d.S.; Tier, M.A.D.; Reguly, A. Effect of heat input on the mechanical behaviour of Al-Cu FSW lap joints. Materials Research 2018, 21.10.1590/1980-5373-mr-2017-0983Search in Google Scholar

43. Schneider, J.; Cobb, J.; Carpenter, J.S.; Mara, N.A. Maintaining nano-lamellar microstructure in friction stir welding (FSW) of accumulative roll bonded (arb) cu-nb nano-lamellar composites (nlc). Journal of Materials Science & Technology 2018, 34, 92-101.10.1016/j.jmst.2017.10.016Search in Google Scholar

44. Saeid, T.; Abdollah-Zadeh, A.; Sazgari, B. Weldability and mechanical properties of dissimilar aluminum–copper lap joints made by friction stir welding. Journal of Alloys and Compounds 2010, 490, 652-655.10.1016/j.jallcom.2009.10.127Search in Google Scholar

45. Muthu, M.F.X.; Jayabalan, V. Tool travel speed effects on the microstructure of friction stir welded aluminum–copper joints. Journal of Materials Processing Technology 2015, 217, 105-113.10.1016/j.jmatprotec.2014.11.007Search in Google Scholar

46. Shah, L.; Othman, N.; Gerlich, A. Review of research progress on aluminium–magnesium dissimilar friction stir welding. Science and Technology of Welding and Joining 2018, 23, 256-270.10.1080/13621718.2017.1370193Search in Google Scholar

47. Tamadon, A.; Baghestani, A.; Bajgholi, M.E. Influence of wc-based pin tool profile on microstructure and mechanical properties of AA1100 FSW welds. Technologies 2020, 8, 34.10.3390/technologies8020034Search in Google Scholar

48. Sharma, N.; Siddiquee, A.N.; Khan, Z.A.; Mohammed, M.T. Material stirring during FSW of Al– Cu: Effect of pin profile. Materials and Manufacturing Processes 2018, 33, 786-794.10.1080/10426914.2017.1388526Search in Google Scholar

49. Carlone, P.; Astarita, A.; Palazzo, G.S.; Paradiso, V.; Squillace, A. Microstructural aspects in Al– Cu dissimilar joining by FSW. The International Journal of Advanced Manufacturing Technology 2015, 79, 1109-1116.10.1007/s00170-015-6874-zSearch in Google Scholar

50. Xue, P.; Xiao, B.; Ni, D.; Ma, Z. Enhanced mechanical properties of friction stir welded dissimilar Al–Cu joint by intermetallic compounds. Materials Science and Engineering: A 2010, 527, 5723-5727.10.1016/j.msea.2010.05.061Search in Google Scholar

51. Tamadon, A.; Pons, D.J.; Clucas, D. Microstructural study on thermomechanical behaviour of 6082-T6 aluminium BFSW weld plates. In Materials@UC 2018, Christchurch, New Zealand, 2018.Search in Google Scholar

52. Tamadon, A.; Pons, D.J.; Clucas, D. Thermomechanical performance of bobbin tool design as an innovative variant for friction stir welding. In Manufacturing and Design Conference (MaD 2019) Auckland, New Zealand, 2019.Search in Google Scholar

53. Tamadon, A. Characterization of flow-based bobbin friction stir welding process. Ph.D. Thesis, University of Canterbury, Christchurch, New Zealand, 2019.Search in Google Scholar

54. Tamadon, A.; Pons, D.; Clucas, D. Analogue modelling of flow patterns in bobbin friction stir welding by the dark-field/bright-field illumination method. Advances in Materials Science 2020, 20, 56-70.10.2478/adms-2020-0003Search in Google Scholar

55. Tamadon, A.; Pons, D.J.; Clucas, D. Flow-based anatomy of bobbin friction-stirred weld; AA6082-T6 aluminium plate and analogue plasticine model. Applied Mechanics 2020, 1, 3-19.10.3390/applmech1010002Search in Google Scholar

56. Silva, B.H.; Zepon, G.; Bolfarini, C.; dos Santos, J.F. Refill friction stir spot welding of aa6082-t6 alloy: Hook defect formation and its influence on the mechanical properties and fracture behavior. Materials Science and Engineering: A 2020, 773, 138724.10.1016/j.msea.2019.138724Search in Google Scholar

eISSN:
2083-4799
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Materials Sciences, Functional and Smart Materials