Open Access

Prediction of Magnetic Properties of a Plastically Deformed Steel and One Way to Measure its Plastic Deformation

   | Jun 12, 2020

Cite

1. Sablik M.J. and Jiles D.C., Coupled magnetoelastic theory of magnetic and magnetostrictive hysteresis, IEEE Trans. Magn. 29 (1993) 2113-2123.10.1109/20.221036Search in Google Scholar

2. Sablik M,J., Rios S., Landgraf F.J.G., et al., Modeling of sharp change in magnetic hysteresis behavior of electrical steel at small plastic deformation, J. Appl. Phys. 97 (2005) 10E518-1 – 10E518-3.10.1063/1.1856191Search in Google Scholar

3. Sablik M.J., Landgraf F.J.G., Modeling microstructural effects on hysteresis loops with the same maximum flux density, IEEE Trans. Magn. 39 (2003) 2528-2530.10.1109/TMAG.2003.816466Search in Google Scholar

4. Sablik M.J., Landgraf F.J.G., Magnabosco R., Fukuhara M., de Campos M.F., Machado R. Missell F.P., Fitting the flow curve of a plastically deformed silicon steel for the prediction of magnetic properties, J. Magn. Magn. Mater. 304 (2006) 155-158.10.1016/j.jmmm.2006.02.118Search in Google Scholar

5. Sablik M.J., Yonamine T., Landgraf F.J.G., Modeling plastic deformation effects on hysteresis loops with the same maximum flux density in steels, IEEE Trans. Mag. 40 (2004) 3219-3226.10.1109/TMAG.2004.832763Search in Google Scholar

6. Szewczyk R., Salach J., Bieńkowski A., Modeling of magnetoelastic materials for force and torque sensors, Solid State Phenom. 144 (2009) 124-129.10.4028/www.scientific.net/SSP.144.124Search in Google Scholar

7. Li J., Xu M., Modified Jiles-Atherton-Sablik model for asymmetry in magnetomechanical effect under tensile and compressive stress, J. Appl. Phys. 110(6) (2011) 063918.10.1063/1.3638711Search in Google Scholar

8. Zirka S. E., Moroz Y. I., Harrison R. G., Chwastek K., On physical aspects of the Jiles-Atherton hysteresis models, J. Appl. Phys. 112(4) (2012) 043916.10.1063/1.4747915Search in Google Scholar

9. Nowicki M., Szewczyk R., Charubin T., Marusenkov A., Nosenko A., Kyrylchuk V., Modeling the hysteresis loop of ultra-high permeability amorphous alloy for space applications, Materials, 11(11) (2018) 2079.10.3390/ma11112079626654430355967Search in Google Scholar

10. Jakubas A., Chwastek K., A Simplified Sablik’s Approach to model the effect of compaction pressure on the shape of hysteresis loops in soft magnetic composite cores, Materials, 13(1) 2020, 170.10.3390/ma13010170698187231906352Search in Google Scholar

11. Landgraf F. J. G., Emura M. Losses and permeability improvement by stress relieving fully processed electrical steels with previous small deformations, J. Magn. Magn. Mater. 242 (2002) 152-156.10.1016/S0304-8853(01)01184-2Search in Google Scholar

12. Chady T., Grochowalski J. M. Eddy current transducer with rotating permanent magnets to test planar conducting plates, Sensors, 19(6) (2019) 1408.10.3390/s19061408647146030909384Search in Google Scholar

13. Kronmuller H., Magnetic techniques for the study of dislocations in ferromagnetic materials, Int. J. Nondestruct. Testing, 3 (1972) 314-321.Search in Google Scholar

14. Astie B., Degauque J. et al., Influence of the dislocation structures on the magnetic and magnetomechanical properties of high-purity iron, IEEE Trans. Magn. 17 (1981) 2929-2931.10.1109/TMAG.1981.1061496Search in Google Scholar

eISSN:
2083-4799
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Materials Sciences, Functional and Smart Materials