Open Access

Impact Tests of UHSS Steel Welded Joints Using the Drop - Tower Impact Drop Method


Cite

1. Górka J. and Stano S., Microstructure and properties of hybrid laser arc welded joints (laser beam-MAG) in thermo-mechanical control processed S700MC Steel, Metals, 8(2), (2018) 132.10.3390/met8020132Search in Google Scholar

2. Pańcikiewicz K., Zielińska-Lipiec A., Tasak E., Cracking of high-strength steel welded joints Adv. Mater. Sci., 13(3), (2013), 76–8510.2478/adms-2013-0013Search in Google Scholar

3. Tuz L., Evaluation of microstructure and selected mechanical properties of laser beam welded S690QL high-strength steel, Adv. Mater. Sci., 18(3), (2018), 34–42.10.1515/adms-2017-0039Search in Google Scholar

4. Tuz L., Sulikowski K., Ocena możliwości spawania stali wysokowytrzymałych ulepszanych cieplnie, Przegląd Spaw. - Weld. Technol. Rev., 90(4), (2018), 9–13.10.26628/ps.v90i4.873Search in Google Scholar

5. Winczek J., Gawrońska E., Gucwa M., Sczygiol N., Theoretical and experimental investigation of temperature and phase transformation during SAW overlaying, Appl. Sci., 9(7), (2019), 1–17.10.3390/app9071472Search in Google Scholar

6. Hebert M., Rousseau C. E., Shukla A., Shock loading and drop weight impact response of glass reinforced polymer composites, Compos. Struct., 84(3), (2008), 199–208.10.1016/j.compstruct.2007.07.002Search in Google Scholar

7. ASTM D7136/D7136M - 12, Standard Test Method for Measuring the Damage Resistance of a Fiber-Reinforced Polymer Matrix Composite to a Drop-Weight Impact Event, (2005).Search in Google Scholar

8. Liu H., Falzon B. G., Tan W., Experimental and numerical studies on the impact response of damage-tolerant hybrid unidirectional/woven carbon-fibre reinforced composite laminates, Compos. Part B Eng., 136, (2018), 101–118.10.1016/j.compositesb.2017.10.016Search in Google Scholar

9. Sevkat E., Liaw B. M., Delale F., Raju B. B., Drop-weight impact responses of woven hybrid glass-graphite/toughened epoxy composites, ASME Int. Mech. Eng. Congr. Expo. Proc., 12(8), (2009), 223–233.10.1115/IMECE2008-68835Search in Google Scholar

10. Ramachandra S., Sudheer Kumar P., Ramamurty U., Impact energy absorption in an Al foam at low velocities, Scr. Mater., 49(8), (2003), 741–745.10.1016/S1359-6462(03)00431-7Search in Google Scholar

11. Harrigan J. J., Reid S. R., Peng C., Inertia effects in impact energy absorbing materials and structures, Int. J. Impact Eng., 22(9), (1999), 955–979.10.1016/S0734-743X(99)00037-8Search in Google Scholar

12. Yoo D. Y., Yoon Y. S., Banthia N., Flexural response of steel-fiber-reinforced concrete beams: Effects of strength, fiber content, and strain-rate, Cem. Concr. Compos., 64, (2015), 84–92.Search in Google Scholar

13. Skoczylas J., Samborski S., Kłonica M., Experimental Study on Static and Dynamic Fracture Toughness of Cured Epoxy Resins, Adv. Sci. Technol. Res. J., 13(1), (2019), 122–127.10.12913/22998624/104702Search in Google Scholar

14. Mazar Atabaki M., Ma J., Liu W., Kovacevic R., Pore formation and its mitigation during hybrid laser/arc welding of advanced high strength steel, Mater. Des., 67, (2015), 509–521.10.1016/j.matdes.2014.10.072Search in Google Scholar

15. Guo W., Crowther D., Francis J. A., Thompson A., Liu Z., Li L., Microstructure and mechanical properties of laser welded S960 high strength steel, Mater. Des., 85, (2015), 534–548.10.1016/j.matdes.2015.07.037Search in Google Scholar

16. Haslberger P., Holly S., Ernst W., Schnitzer R., Microstructure and mechanical properties of high-strength steel welding consumables with a minimum yield strength of 1100 MPa, J. Mater. Sci., 53(9), 2018, 6968-6979.10.1007/s10853-018-2042-9Search in Google Scholar

17. Węglowski M.S., Zeman M., Grocholewski A., Effect of welding thermal cycles on microstructure and mechanical properties of simulated heat affected zone for a Weldox 1300 ultra-high strength alloy steel, Arch. Metall. Mater., 61(1), (2016), 127–132.10.1515/amm-2016-0024Search in Google Scholar

18. Kurc-Lisiecka A., Piwnik J., Lisiecki A., Laser welding of new grade of advanced high strength steel STRENX 1100 MC, Arch. Metall. Mater., 62(3), (2017), 1651–1657.10.1515/amm-2017-0253Search in Google Scholar

19. Gáspár M., Sisodia R., Improving the HAZ toughness of Q+T high strength steels by post weld heat treatment, in IOP Conference Series: Materials Science and Engineering, 426, (2018), 012012.10.1088/1757-899X/426/1/012012Search in Google Scholar

20. Su G., Gao X., Zhang D., Du L., Hu J., Liu Z., Impact of Reversed Austenite on the Impact Toughness of the High-Strength Steel of Low Carbon Medium Manganese, J. Miner., 70(5), (2018), 672–679.10.1007/s11837-017-2732-9Search in Google Scholar

21. Nowacki J., Sajek A., Matkowski P., The influence of welding heat input on the microstructure of joints of S1100QL steel in one-pass welding, Arch. Civ. Mech. Eng., 16, (2016), 777–78310.1016/j.acme.2016.05.001Search in Google Scholar

22. Szulc J., Chmielewski T., Pilat Z., Zrobotyzowane spawanie hybrydowe Plazma + MAG stali S700 MC Robotic hybrid Plasma + MAG welding of S700 MC steel, Przegląd Spaw. - Weld. Technol. Rev., 88(1), (2016), 41–45.10.26628/ps.v88i1.561Search in Google Scholar

eISSN:
2083-4799
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Materials Sciences, Functional and Smart Materials