Cite

1. World Health Organization (2020). Antibiotic resistance. [https://www.who.int/news-room/fact-sheets/detail/antibiotic-resistance]Search in Google Scholar

2. FAO (Food and Agriculture Organization of the United Nations) 2016. Drivers, dynamics, and epidemiology of antimicrobial resistance in animal production.Search in Google Scholar

3. FDA (Federal and Drug Administration) 2021. Antimicrobials Sold or Distributed for Use in Food-Producing Animals.Search in Google Scholar

4. FDA (Food and Agriculture Organization of the United Nations) 2022. Animal production. [https://www.fao.org/antimicrobial-resistance/key-sectors/animal-production/en/]Search in Google Scholar

5. USDA (United States Department of Agriculture) 2022. Livestock and poultry: world markets and trade.Search in Google Scholar

6. He Y, Yuan Q, Mathieu J, Stadler L, Senehi N, Sun R, Álvarez PJJ. Antibiotic resistance genes from livestock waste: occurrence, dissemination, and treatment. Npj Clean Water 2020, 3:4.Search in Google Scholar

7. Law A, Solano O, Brown CJ, Hunter SS, Fagnan M, Top EM, Stalder T. Biosolids as a source of antibiotic resistance plasmids for commensal and pathogenic bacteria. Front Microbiol 2021, 12.Search in Google Scholar

8. Guo MT, Yuan QB, Yang J. Distinguishing effects of ultraviolet exposure and chlorination on the horizontal transfer of antibiotic resistance genes in municipal wastewater. Environ Sci Technol 2015, 49: 5771–5778.Search in Google Scholar

9. Han XM, Hu HW, Chen QL, Yang LY, Li HL, Zhu YG, Li XZ, Ma YB. Antibiotic resistance genes and associated bacterial communities in agricultural soils amended with different sources of animal manure. Soil Biol Biochem 2018, 126: 91–102.Search in Google Scholar

10. Yuan QB, Zhai YF, Mao BY, Schwarz C, Hu N. Fates of antibiotic resistance genes in a distributed swine wastewater treatment plant. Water Environ Res 2019 [https://doi.org/10.1002/wer.1125]Search in Google Scholar

11. Yang F, Han B, Gu Y, Zhang K. Swine liquid manure: A hotspot of mobile genetic elements and antibiotic resistance genes. Sci Rep 2020,10:15037.Search in Google Scholar

12. Muurinen J, Richert J, Wickware CL, Richert B, Johnson TA. Swine growth promotion with antibiotics or alternatives can increase antibiotic resistance gene mobility potential. Sci Rep 2021, 11:5485.Search in Google Scholar

13. Wang M, Donovan SM. Human microbiota-associated swine: current progress and future opportunities. ILAR J. 2015, 56(1):63–73.Search in Google Scholar

14. Rose EC, Blikslager AT, Ziegler AL. Porcine models of the intestinal microbiota: the translational key to understanding how gut commensals contribute to gastrointestinal disease. Front Vet Sci 2022, 83:4598.Search in Google Scholar

15. Wang C, Song Y, Tang N, Zhang G, Leclercq SO, Feng J. The shared resistome of human and pig microbiota is mobilized by distinct genetic elements. App Environ Microbiol 2020, 87(5): 01910–20.Search in Google Scholar

16. Bortolaia V, Kaas RS, Ruppe E, Roberts MC, Schwarz S, Cattoir V, Philippon A, Allesoe RL, Rebelo AR, Florensa AF, Fagelhauer L, Chakraborty T, Neumann B, Werner G, Bender JK, Stingl K, Nguyen M, Coppens J, Xavier BB, Malhotra-Kumar S, … Aarestrup FM. ResFinder 4.0 for predictions of phenotypes from genotypes. J Antimicrob Chemother. 2020;75(12):3491–3500.Search in Google Scholar

17. Johansson MHK, Bortolaia V, Tansirichaiya S, Aarestrup FM, Roberts AP, Petersen TN. 2021. Detection of mobile genetic elements associated with antibiotic resistance in Salmonella enterica using a newly developed web tool: MobileElementFinder. J Antimicrob Chemother 76:101–109.Search in Google Scholar

18. Golubov A: Genome instability in bacteria: Causes and consequences. In: Translational Epigenetics, Genome instability. Academic Press; 2021, 73–90. ISBN 9780323856799. [DOI: 10.1016/b978-0-323-85679-9.00005-2].Open DOISearch in Google Scholar

19. Jarat C, Tokeeree, Y, Wattanakornsiri A. Antibiotic resistance genes (ARGs) in soil receiving swine wastes in Surin Province, Thailand. Environment Asia 2021, 14:2, 31–39.Search in Google Scholar

20. Xiong W, Sun Y, Ding X, Wang M, Zeng Z. Selective pressure of antibiotics on ARGs and bacterial communities in manure-polluted freshwater-sediment microcosms. Front Microbiol 2015, 6:194.Search in Google Scholar

21. Wyres KL, Holt KE. Klebsiella pneumoniae as a key trafficker of drug resistance genes from environmental to clinically important bacteria. Curr Opin Microbiol 2018, 45:131–139.Search in Google Scholar

22. Effah CY, Sun T, Liu S, Wu Y. Klebsiella pneumoniae: an increasing threat to public health. Ann Clin Microbiol Antimicrob 2020, 19:1.Search in Google Scholar

23. Jacoby GA, Strahilevitz J, Hooper DC. Plasmid-mediated quinolone resistance. Microbiol Spectr 2014, 2(2).Search in Google Scholar

24. Davin-Regli A, Lavigne JP, Pagès JM. Enterobacter spp.: Update on taxonomy, clinical aspects, and emerging antimicrobial resistance. Clin Microbiol Rev 2019, 32:4.Search in Google Scholar

25. Li J, Cao J, Zhu YG, Chen QL, Shen F, Wu Y, Xu S, Fan H, Da G, Huang RJ, Wang, J, Lorelei de Jesús A, Morawska L, Chan CK, Peccia J, Yao M. Global survey of antibiotic resistance genes in air. Environ Sci Technol 2018, 52: 10975–10984.Search in Google Scholar

26. Capita R, Castaño-Arriba A, Rodríguez-Melcón C, Igrejas G, Poeta P, Alonso-Calleja C: Diversity, antibiotic resistance, and biofilm-forming ability of Enterobacteria isolated from red meat and poultry preparations. Microorganisms 2020, 8(8): 1226.Search in Google Scholar

27. Torres C, Alonso CA, Ruiz-Ripa L, León-Sampedro R, Del Campo R, Coque TM. Antimicrobial resistance in Enterococcus spp. of animal origin. Microbiol Spectr 2018, 6(4): 6–24.Search in Google Scholar

28. Hu Y, Yang X, Lv N, Liu F, Wu J, Lin IYC, Wu N, Weimer BC, Gao GF Liu Y, Zhu B. The bacterial mobile resistome transfer network connecting the animal and human microbiomes. Appl Environ Microbiol 2016, 82(22): 6672–6681.Search in Google Scholar

29. Wang X, Xe Y, Cai H, Duan S, Song X, Wu Y, Fang T, Dong Q, Liu H. Growth and survival characteristics of Salmonella enterica regarding antibiotic resistance phenotypes. LWT 2021, 149: 111872Search in Google Scholar

30. Ventola, C.L. (2015). The antibiotic resistance crisis. P.T., 40(4): 277–283.Search in Google Scholar

31. NHS (National Health Service). 2022. Antibiotic resistance. [https://www.nhs.uk/conditions/antibiotics/antibiotic-antimicrobial-resistance/#:~:text=The%20overuse%20of%20antibiotics%20in,Clostridium%20difficile%20(CSearch in Google Scholar

32. He Y, Yuan Q, Mathieu J, Stadler L, Senehi N, Sun R, Álvarez PJJ. Antibiotic resistance genes from livestock waste: occurrence, dissemination, and treatment. Npj Clean Water 2020, 3:4.Search in Google Scholar

33. World Health Organization. (2017). Stop using antibiotics in healthy animals to prevent the spread of antibiotic resistance. [https://www.who.int/news/item/07-11-2017-stop-using-antibiotics-in-healthy-animals-to-prevent-the-spread-of-antibiotic-resistance]Search in Google Scholar

34. Ministério da Agricultura, Pecuária e Abastecimiento. 2020. Diário oficial da união - Seção 1. Governo do Brasil. [https://pesquisa.in.gov.br/imprensa/jsp/visualiza/index.jsp?jornal=515&pagina=6&data=23/01/2020]Search in Google Scholar

35. European Medicines Agency. 2021. Sales of veterinary antimicrobial agents in 31 european countries in 2019 and 2020. [https://www.ema.europa.eu/en/documents/report/sales-veterinary-antimicrobial-agents-31-european-countries-2019-2020-trends-2010-2020-eleventh_en.pdf]Search in Google Scholar

36. Zhang Z, Zhang Q, Wang T, Xu N, Lu T, Hong W, Penuelas J, Gillings M, Wang M, Gao W, Qian H. Assessment of global health risk of antibiotics resistance genes. Nature 2022, 13:1553.Search in Google Scholar

37. Rodríguez-Noriega E, León-Garnica G, Petersen-Morfín S, Pérez-Gómez HR, González-Díaz E, Morfín-Otero R. La evolución de la resistencia bacteriana en México, 1973-2013. Biomédica 2014, 34: 181–190.Search in Google Scholar

38. Secretaría de Gobernación. (2014). Diario oficial de la federación. Gobierno de México. https://dof.gob.mx/nota_detalle.php?codigo=5363349&fecha=09/10/2014#gsc.tab=0Search in Google Scholar

eISSN:
1820-7448
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Veterinary Medicine