1. bookVolume 64 (2014): Issue 2 (June 2014)
Journal Details
License
Format
Journal
eISSN
1820-7448
First Published
25 Mar 2014
Publication timeframe
4 times per year
Languages
English
access type Open Access

The Blood is Rich in Different Types of Mesoderm Derived Stem and Progenitor Cells

Published Online: 17 Jun 2014
Volume & Issue: Volume 64 (2014) - Issue 2 (June 2014)
Page range: 156 - 178
Received: 26 May 2014
Accepted: 03 Jun 2014
Journal Details
License
Format
Journal
eISSN
1820-7448
First Published
25 Mar 2014
Publication timeframe
4 times per year
Languages
English
Abstract

The blood and bone marrow have been thoroughly investiagated for more than a century, but we are still gaining surprising new informations. Blood transports different mature cells such as erythrocytes, platelets and granulocytes, but curiously, the blood is also transporting a number of non-differentiated cells of various mesodermal lineages: hematopoietic and mesenchymal stem and progenitor cells, endothelial progenitor cells and very small embryonal like cells are some of the most impressive examples. In adults the bone marrow is the source of practiclly all cells that could be found in the blood. Stem and progenitor cells egress from the bone marrow and home to the bone marrow or various tissues in a highly regulated manner. The fact that the hematopoetic stem and progenitor cells traffic through the blood and repopulate the bone marrow niche is largely explored in stem cell therapy in human medicine. In this review we will briefly describe the main characteristics of stem and progenitor cells, the mechanisms of their mobilization from the bone marrow and homing to target tissues. Also, the history and importance of the fact that different stem, progenitor and precursor cells could be isolated from the blood circulation will be discussed in the light of informations concerning their use in human and veterinary medicine.

Keywords

1. Lai AY, Kondo M: Identification of a bone marrow precursor of the earliest thymocytes in adult mouse. Proc Natl Acad Sci U S A. 2007, 104(15):6311-6.10.1073/pnas.0609608104185104717404232Search in Google Scholar

2. Mortellaro A, Wong SC, Fric J, Ricciardi-Castagnoli P: The need to identify myeloid dendritic cell progenitors in human blood. Trends Immunol. 2010, 31(1):18-23.10.1016/j.it.2009.09.01019836307Search in Google Scholar

3. Ogawa M, Larue AC, Watson PM, Watson DK: Hematopoietic stem cell origin of connective tissues. Exp Hematol. 2010, 38(7):540-7.10.1016/j.exphem.2010.04.00520412832Search in Google Scholar

4. Phinney DG, Prockop DJ: Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair--current views. Stem Cells. 2007, 25(11):2896-902.10.1634/stemcells.2007-063717901396Search in Google Scholar

5. Theise ND: Stem cell plasticity: recapping the decade, mapping the future. Exp Hematol. 2010, 38(7):529-39.10.1016/j.exphem.2010.04.01320438800Search in Google Scholar

6. Catlin SN, Busque L, Gale RE, Guttorp P, Abkowitz JL: The replication rate of human hematopoietic stem cells in vivo. Blood. 2011, 117(17):4460-6.10.1182/blood-2010-08-303537309956821343613Search in Google Scholar

7. Adams GB, Chabner KT, Alley IR, Olson DP, Szczepiorkowski ZM, Poznansky MC, Kos CH, Pollak MR, Brown EM, Scadden DT: Stem cell engraftment at the endosteal niche is specified by the calcium-sensing receptor. Nature. 2006, 439(7076):599-603.10.1038/nature0424716382241Search in Google Scholar

8. Kovačević-Filipović M, Petakov M, Hermitte F, Debeissat C, Krstić A, Jovcić G, Bugarski D, Lafarge X, Milenković P, Praloran V, Ivanović Z: Interleukin-6 (IL-6) and low O(2) concentration (1%) synergize to improve the maintenance of hematopoietic stem cells (pre-CFC). J Cell Physiol. 2007, 212(1):68-75.10.1002/jcp.2100317311290Search in Google Scholar

9. Frenette PS, Pinho S, Lucas D, Scheiermann C: Mesenchymal stem cell: keystone of the hematopoietic stem cell niche and a stepping-stone for regenerative medicine. Annu Rev Immunol. 2013, 31:285-316.10.1146/annurev-immunol-032712-09591923298209Search in Google Scholar

10. Liu ZJ, Zhuge Y, Velazquez OC: Trafficking and differentiation of mesenchymal stem cells. J Cell Biochem. 2009, 106(6):984-91.10.1002/jcb.2209119229871Search in Google Scholar

11. Golan K, Vagima Y, Ludin A, Itkin T, Cohen-Gur S, Kalinkovich A, Kollet O, Kim C, Schajnovitz A, Ovadya Y, Lapid K, Shivtiel S, Morris AJ, Ratajczak MZ, Lapidot T: S1P promotes murine progenitor cell egress and mobilization via S1P1-mediated ROS signaling and SDF-1 release. Blood. 2012, 119(11):2478-88.10.1182/blood-2011-06-358614Search in Google Scholar

12. Hopman RK, DiPersio JF: Advances in stem cell mobilization. Blood Rev. 2014, 28(1):31-40.10.1016/j.blre.2014.01.001Search in Google Scholar

13. Hoggatt J, Mohammad KS, Singh P, Hoggatt AF, Chitteti BR, Speth JM, Hu P, Poteat BA, Stilger KN, Ferraro F, Silberstein L, Wong FK, Farag SS, Czader M, Milne GL, Breyer RM, Serezani CH, Scadden DT, Guise TA, Srour EF, Pelus LM: Differential stem- and progenitor-cell trafficking by prostaglandin E2. Nature. 2013, 495(7441):365-9.10.1038/nature11929Search in Google Scholar

14. Wang W, Li C, Pang L, Shi C, Guo F, Chen A, Cao X, Wan M: Mesenchymal Stem Cells Recruited by Active TGFβ Contribute to Osteogenic Vascular Calcification. Stem Cells Dev. 2014, in press.10.1089/scd.2013.0528Search in Google Scholar

15. McCulloch, Till JE. The radiation sensitivity of normal mouse bone marrow cells, determined by quantitative marrow transplantation into irradiated mice. Radiat Res. 1960, 13:115-25.10.2307/3570877Search in Google Scholar

16. Goodman JW, Hodgson GS: Evidence for stem cells in the peripheral blood of mice. Blood. 1962, 19:702-14.10.1182/blood.V19.6.702.702Search in Google Scholar

17. Massberg S, von Andrian UH: Novel trafficking routes for hematopoietic stem and progenitor cells. Ann N Y Acad Sci. 2009, 1176:87-93.10.1111/j.1749-6632.2009.04609.xSearch in Google Scholar

18. Fischer KD, Agrawal DK : Hematopoietic Stem and Progenitor Cells in Inflammation and Allergy. Front Immunol. 2013, 4 (4):428.Search in Google Scholar

19. Utter GH, Lee TH, Rivers RM, Montalvo L, Wen L, Chafets DM, Reed WF, Busch MP: Microchimerism decades after transfusion among combat-injured US veterans from the Vietnam, Korean, and World War II conflicts. Transfusion. 2008, 48(8):1609-1510.1111/j.1537-2995.2008.01758.xSearch in Google Scholar

20. Brunet de la Grange P, Vlaski M, Duchez P, Chevaleyre J, Lapostolle V, Boiron JM, Praloran V, Ivanovic Z: Long-term repopulating hematopoietic stem cells and “side population” in human steady state peripheral blood. Stem Cell Res. 2013, 11(1):625-33.10.1016/j.scr.2013.04.003Search in Google Scholar

21. Kovačević M, Božić T, Jovčić G, Petakov M, Bugarski D, Stanković J, Ivanović Z: 2001. Pig bone marrow and peripheral blood granulocyte-macrophage progenitor cells. Acta Veterinaria (Beograd), 51(1): 15-26.Search in Google Scholar

22. Dutra HS, Rossi MI, Azevedo SP, el-Cheikh MC, Borojevic R: Haematopoietic capacity of colony-forming cells mobilized in hepatic inflammatory reactions as compared to that of normal bone marrow cells. Res Immunol. 1997, 148(7):437-44.10.1016/S0923-2494(97)82666-1Search in Google Scholar

23. Kovačević M, Božić T, Ivanović Zoran: Erythroid progenitor cells from pig bone marrow and peripheral blood. Veterinary Journal. 1999, 158: 196-203.10.1053/tvjl.1999.0382Search in Google Scholar

24. Kovačević M, Božić T, Pavlović V, Petakov Marijana, Bugarski Diana, Jovčić Gordana, Ivanović Zoran: Pig bone marrow and peripheral blood erythroid progenitor cells in S phase of the cell cycle. Acta Veterinaria (Beograd) 2000, 50 (4): 207-214.Search in Google Scholar

25. Brockbank KG: Circulating erythroid progenitors in normal and anemic rabbits. Blut. 1983, 47(3):131-7.10.1007/BF00320174Search in Google Scholar

26. Eaves AC, Henkelman DH, Eaves CJ: Abnormal erythropoiesis in the myeloproliferative disorders: an analysis of underlying cellular and humoral mechanisms. Scand J Haematol. 1982, 29(5):373-80.Search in Google Scholar

27. Beguin Y, Fillet G, Bury J, Fairon Y: Ferrokinetic study of splenic erythropoiesis: relationships among clinical diagnosis, myelofibrosis, splenomegaly, and extramedullary erythropoiesis. Am J Hematol. 1989, 32(2):123-8.10.1002/ajh.2830320209Search in Google Scholar

28. Paulson RF, Shi L, Wu DC: Stress erythropoiesis: new signals and new stress progenitor cells. Curr Opin Hematol. 2011, 18(3):139-45.10.1097/MOH.0b013e32834521c8Search in Google Scholar

29. Nichol JL, Hornkohl AC, Choi ES, Hokom MM, Ponting I, Schuening FW, Hunt P: Enrichment and characterization of peripheral blood-derived megakaryocyte progenitors that mature in short-term liquid culture. Stem Cells. 1994, 12(5):494-505.10.1002/stem.5530120505Search in Google Scholar

30. Rivière C, Subra F, Cohen-Solal K, Cordette-Lagarde V, Letestu R, Auclair C, Vainchenker W, Louache F: Phenotypic and functional evidence for the expression of CXCR4 receptor during megakaryocytopoiesis. Blood. 1999, 93(5):1511-23.10.1182/blood.V93.5.1511Search in Google Scholar

31. Boisset JC, van Cappellen W, Andrieu-Soler C, Galjart N, Dzierzak E, Robin C: In vivo imaging of haematopoietic cells emerging from the mouse aortic endothelium. Nature. 2010, 464(7285):116-20.10.1038/nature08764Search in Google Scholar

32. Lin Y, Yoder MC, Yoshimoto M: Lymphoid progenitor emergence in the murine embryo and yolk sac precedes stem cell detection: Stem Cells Dev. 2014, 23(11):1168-77.10.1089/scd.2013.0536Search in Google Scholar

33. Moore BB, Murray L, Das A, Wilke CA, Herrygers AB, Toews GB: The role of CCL12 in the recruitment of fibrocytes and lung fibrosis. Am J Respir Cell Mol Biol. 2006, 35(2):175-81.10.1165/rcmb.2005-0239OCSearch in Google Scholar

34. Delassus S, Cumano A: Circulation of hematopoietic progenitors in the mouse embryo. Immunity. 1996, 4(1):97-106.10.1016/S1074-7613(00)80302-7Search in Google Scholar

35. Chen C, Zeng L, Ding S, Xu K: Adult endothelial progenitor cells retain hematopoiesis potential. Transplant Proc. 2010, 42(9):3745-9.10.1016/j.transproceed.2010.07.09421094850Search in Google Scholar

36. Körbling M, Freireich EJ: Twenty-five years of peripheral blood stem cell transplantation. Blood. 2011, 117(24):6411-6.10.1182/blood-2010-12-32221421460243Search in Google Scholar

37. Richman CM, Weiner RS, Yankee RA: Increase in circulating stem cells following chemotherapy in man. Blood. 1976, 47(6):1031-9.10.1182/blood.V47.6.1031.1031Search in Google Scholar

38. Socinski MA, Cannistra SA, Elias A, Antman KH, Schnipper L, Griffin JD: Granulocytemacrophage colony stimulating factor expands the circulating haemopoietic progenitor cell compartment in man. Lancet. 1988, 28(8596):1194-8.Search in Google Scholar

39. Ivanovic Z, Kovacevic-Filipovic M, Jeanne M, Ardilouze L, Bertot A, Szyporta M, Hermitte F, Lafarge X, Duchez P, Vlaski M, Milpied N, Pavlovic M, Praloran V, Boiron JM: CD34+ cells obtained from “good mobilizers” are more activated and exhibit lower ex vivo expansion efficiency than their counterparts from “poor mobilizers”. Transfusion. 2010, 50(1):120-7.10.1111/j.1537-2995.2009.02436.x19821946Search in Google Scholar

40. Passweg JR, Baldomero H, Bregni M, Cesaro S, Dreger P, Duarte RF, Falkenburg JH, Kröger N, Farge-Bancel D, Gaspar HB, Marsh J, Mohty M, Peters C, Sureda A, Velardi A, Ruiz de Elvira C, Madrigal A: European Group for Blood and Marrow Transplantation. Hematopoietic SCT in Europe: data and trends in 2011. Bone Marrow Transplant. 2013, 48(9):1161-7.10.1038/bmt.2013.51376351723584439Search in Google Scholar

41. Vlaski M, Lafarge X, Chevaleyre J, Duchez P, Boiron JM, Ivanovic Z: Low oxygen concentration as a general physiologic regulator of erythropoiesis beyond the EPOrelated downstream tuning and a tool for the optimization of red blood cell production ex vivo. Exp Hematol. 2009, 37(5):573-84.10.1016/j.exphem.2009.01.00719375648Search in Google Scholar

42. Filippone C, Franssila R, Kumar A, Saikko L, Kovanen PE, Söderlund-Venermo M, Hedman K: Erythroid progenitor cells expanded from peripheral blood without mobilization or preselection: molecular characteristics and functional competence. PLoS One. 2010, 5(3):e9496-9504.10.1371/journal.pone.0009496283048720209110Search in Google Scholar

43. Boiron JM, Dazey B, Cailliot C, Launay B, Attal M, Mazurier F, McNiece IK, Ivanovic Z, Caraux J, Marit G, Reiffers J. Large-scale expansion and transplantation of CD34(+) hematopoietic cells: in vitro and in vivo confirmation of neutropenia abrogation related to the expansion process without impairment of the long-term engraftment capacity. Transfusion. 2006, 46(11):1934-42.10.1111/j.1537-2995.2006.01001.x17076849Search in Google Scholar

44. Escobar C, Grindem C, Neel JA, Suter SE: Hematologic changes after total body irradiation and autologous transplantation of hematopoietic peripheral blood progenitor cells in dogs with lymphoma. Vet Pathol. 2012, 49(2):341-3.10.1177/030098581141072121670196Search in Google Scholar

45. Warry EE, Willcox JL, Suter SE: Autologous peripheral blood hematopoietic cell transplantation in dogs with T-cell lymphoma. J Vet Intern Med. 2014, 28(2):529-3710.1111/jvim.12302485799324467413Search in Google Scholar

46. Berz D, McCormack EM, Winer ES, Colvin GA, Quesenberry PJ: Cryopreservation of hematopoietic stem cells. Am J Hematol. 2007, 82(6):463-72.10.1002/ajh.20707207552517266054Search in Google Scholar

47. Jeanne M, Kovacevic-Filipovic M, Szyporta M, Vlaski M, Hermitte F, Lafarge X, Duchez P, Boiron JM, Praloran V, Ivanovic Z: Low-oxygen and high-carbon-dioxide atmosphere improves the conservation of hematopoietic progenitors in hypothermia. Transfusion. 2009, 49(8):1738-4610.1111/j.1537-2995.2009.02191.x19413727Search in Google Scholar

48. Vlaski M, Negroni L, Kovacevic-Filipovic M, Guibert C, Brunet de la Grange P, Rossignol R, Chevaleyre J, Duchez P, Lafarge X, Praloran V, Schmitter JM, Ivanovic Z: Hypoxia/ hypercapnia-induced adaptation maintains functional capacity of cord blood stem and progenitor cells at 4ºC. J Cell Physiology. 2014, in press10.1002/jcp.2467824912010Search in Google Scholar

49. Jacome-Galarza CE, Lee SK, Lorenzo JA, Aguila HL: Identification, characterization, and isolation of a common progenitor for osteoclasts, macrophages, and dendritic cells from murine bone marrow and periphery. J Bone Miner Res. 2013, 28(5):1203-13.10.1002/jbmr.1822362545423165930Search in Google Scholar

50. Charles JF, Hsu LY, Niemi EC, Weiss A, Aliprantis AO, Nakamura MC: Inflammatory arthritis increases mouse osteoclast precursors with myeloid suppressor function.J Clin Invest. 2012, 122(12):4592-605.10.1172/JCI60920353353223114597Search in Google Scholar

51. Nijweide PJ, Burger EH, Feyen JH: Cells of bone: proliferation, differentiation, and hormonal regulation. Physiol Rev. 1986, 66(4):855-86.10.1152/physrev.1986.66.4.8553532144Search in Google Scholar

52. Martin TJ: Historically significant events in the discovery of RANK/RANKL/OPG. World J Orthop. 2013, 4(4):186-197.10.5312/wjo.v4.i4.186380123824147254Search in Google Scholar

53. Muto A, Mizoguchi T, Udagawa N, Ito S, Kawahara I, Abiko Y, Arai A, Harada S, Kobayashi Y, Nakamichi Y, Penninger JM, Noguchi T, Takahashi N: Lineage-committed osteoclast precursors circulate in blood and settle down into bone. J Bone Miner Res. 2011, 26(12):2978-90.10.1002/jbmr.49021898588Search in Google Scholar

54. Erices A, Conget P, Minguell JJ: Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol. 2000, 109(1):235-42.10.1046/j.1365-2141.2000.01986.x10848804Search in Google Scholar

55. Li P, Schwarz EM, O’Keefe RJ, Ma L, Looney RJ, Ritchlin CT, Boyce BF, Xing L: Systemic tumor necrosis factor alpha mediates an increase in peripheral CD11bhigh osteoclast precursors in tumor necrosis factor alpha-transgenic mice. Arthritis Rheum. 2004, 50(1):265-76.10.1002/art.1141914730625Search in Google Scholar

56. Tjoa ST, de Vries TJ, Schoenmaker T, Kelder A, Loos BG, Everts V: Formation of osteoclast-like cells from peripheral blood of periodontitis patients occurs without supplementation of macrophage colony-stimulating factor. J Clin Periodontol. 2008, 35(7):568-75.10.1111/j.1600-051X.2008.01241.x18435789Search in Google Scholar

57. Caprioli A, Jaffredo T, Gautier R, Dubourg C, Dieterlen-Lièvre F: Blood-borne seeding by hematopoietic and endothelial precursors from the allantois. Proc Natl Acad Sci U S A. 1998, 95(4):1641-6.10.1073/pnas.95.4.1641191309465069Search in Google Scholar

58. Pardanaud L, Luton D, Prigent M, Bourcheix LM, Catala M, Dieterlen-Lievre F : Two distinct endothelial lineages in ontogeny, one of them related to hemopoiesis. Development. 1996, 122(5):1363-71.10.1242/dev.122.5.13638625825Search in Google Scholar

59. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM: Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997, 275(5302):964-7.10.1126/science.275.5302.9649020076Search in Google Scholar

60. Yoder MC: Human endothelial progenitor cells. Cold Spring Harb Perspect Med. 2012, 2(7):a00669210.1101/cshperspect.a006692338594622762017Search in Google Scholar

61. Favre J, Terborg N, Horrevoets AJ: The diverse identity of angiogenic monocytes. Eur J Clin Invest. 2013, 43(1):100-7.Search in Google Scholar

62. Rehman J, Li J, Orschell CM, March KL. Peripheral blood “endothelial progenitor cells” are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation. 2003, 107(8):1164-9.10.1161/01.CIR.0000058702.69484.A012615796Search in Google Scholar

63. Liu JM, Lawrence F, Kovacevic M, Bignon J, Papadimitriou E, Lallemand JY, Katsoris P, Potier P, Fromes Y, Wdzieczak-Bakala J. The tetrapeptide AcSDKP, an inhibitor of primitive hematopoietic cell proliferation, induces angiogenesis in vitro and in vivo. Blood. 2003, 101(8):3014-20.10.1182/blood-2002-07-231512480715Search in Google Scholar

64. Fromes Y, Liu JM, Kovacevic M, Bignon J, Wdzieczak-Bakala J: The tetrapeptide acetylserine- aspartyl-lysine-proline improves skin flap survival and accelerates wound healing. Wound Repair Regen. 2006, 14(3):306-12.10.1111/j.1743-6109.2006.00125.x16808809Search in Google Scholar

65. Silvestre JS, Smadja DM, Lévy BI: Postischemic revascularization: from cellular and molecular mechanisms to clinical applications. Physiol Rev. 2013, 93(4):1743-802.10.1152/physrev.00006.201324137021Search in Google Scholar

66. Werner N, Nickenig G: Clinical and therapeutical implications of EPC biology in atherosclerosis. J Cell Mol Med. 2006, 10(2):318-32.10.1111/j.1582-4934.2006.tb00402.x393312416796802Search in Google Scholar

67. Gössl M, Mödder UI, Gulati R, Rihal CS, Prasad A, Loeffler D, Lerman LO, Khosla S, Lerman A: Coronary endothelial dysfunction in humans is associated with coronary retention of osteogenic endothelial progenitor cells. Eur Heart J. 2010, 31(23):2909-14.10.1093/eurheartj/ehq373299595320935001Search in Google Scholar

68. Peris P, Atkinson EJ, Gössl M, Kane TL, McCready LK, Lerman A, Khosla S, McGregor UI: Effects of bisphosphonate treatment on circulating osteogenic endothelial progenitor cells in postmenopausal women. Mayo Clin Proc. 2013, 88(1):46-55.10.1016/j.mayocp.2012.08.019365931623228561Search in Google Scholar

69. Krenning G, Zeisberg EM, Kalluri R: The origin of fibroblasts and mechanism of cardiac fibrosis. J Cell Physiol. 2010, 225(3):631-7.10.1002/jcp.22322309850320635395Search in Google Scholar

70. van der Spoel TI, Jansen of Lorkeers SJ, Agostoni P, van Belle E, Gyöngyösi M, Sluijter JP, Cramer MJ, Doevendans PA, Chamuleau SA: Human relevance of pre-clinical studies in stem cell therapy: systematic review and meta-analysis of large animal models of ischaemic heart disease. Cardiovasc Res. 2011, 91(4):649-58.10.1093/cvr/cvr11321498423Search in Google Scholar

71. Mitchell AJ, Sabondjian E, Blackwood KJ, Sykes J, Deans L, Feng Q, Stodilka RZ, Prato FS, Wisenberg G: Comparison of the myocardial clearance of endothelial progenitor cells injected early versus late into reperfused or sustained occlusion myocardial infarction. Int J Cardiovasc Imaging. 2013, 29(2):497-504.10.1007/s10554-012-0086-5356095622736429Search in Google Scholar

72. Jantzen AE, Lane WO, Gage SM, Haseltine JM, Galinat LJ, Jamiolkowski RM, Lin FH, Truskey GA, Achneck HE: Autologous endothelial progenitor cell-seeding technology and biocompatibility testing for cardiovascular devices in large animal model. J Vis Exp. 2011, 55: e3197-3205.10.3791/3197323020421931293Search in Google Scholar

73. Friedenstein, A.J.,I.I. Piatetzky-Shapiro, K.V. Petrakova: Osteogenesis in transplants of bone marrow cells. J. Embryol. Exp. Morphol. 1966, 16:381-390.10.1242/dev.16.3.381Search in Google Scholar

74. Friedenstein AJ, Chailakhjan RK, Lalykina KS: The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet. 1970, 3(4):393-403.Search in Google Scholar

75. Friedenstein AJ, Chailakhyan RK, Latsinik NV, Panasyuk AF, Keiliss-Borok IV: Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues. Cloning in vitro and retransplantation in vivo. Transplantation. 1974, 17(4):331-40.10.1097/00007890-197404000-000014150881Search in Google Scholar

76. Caplan AI: Mesenchymal stem cells. J Orthop Res. 1991, 9(5):641-50.10.1002/jor.11000905041870029Search in Google Scholar

77. Luria EA, Panasyuk AF, Friedenstein A:. Fibroblast colony formation from monolayer cultures of blood cells. Transfusion. 1971, 11(6):345-9.10.1111/j.1537-2995.1971.tb04426.x5136066Search in Google Scholar

78. Fernández M, Simon V, Herrera G, Cao C, Del Favero H, Minguell JJ: Detection of stromal cells in peripheral blood progenitor cell collections from breast cancer patients. Bone Marrow Transplant. 1997, 20(4):265-71.10.1038/sj.bmt.17008909285540Search in Google Scholar

79. Lazarus HM, Haynesworth SE, Gerson SL, Caplan AI: Human bone marrow-derived mesenchymal (stromal) progenitor cells (MPCs) cannot be recovered from peripheral blood progenitor cell collections. J Hematother. 1997, 6(5):447-55.10.1089/scd.1.1997.6.4479368181Search in Google Scholar

80. Wexler SA, Donaldson C, Denning-Kendall P, Rice C, Bradley B, Hows JM. Adult bone marrow is a rich source of human mesenchymal ‘stem’ cells but umbilical cord and mobilized adult blood are not. Br J Haematol. 2003, 121(2):368-74.10.1046/j.1365-2141.2003.04284.x12694261Search in Google Scholar

81. Zvaifler NJ, Marinova-Mutafchieva L, Adams G, Edwards CJ, Moss J, Burger JA, Maini RN: Mesenchymal precursor cells in the blood of normal individuals. Arthritis Res. 2000, 2(6):477-88.10.1186/ar1301782011056678Search in Google Scholar

82. Kuznetsov SA, Mankani MH, Gronthos S, Satomura K, Bianco P, Robey PG. Circulating skeletal stem cells. J Cell Biol. 2001,153(5):1133-40.10.1083/jcb.153.5.1133217432211381097Search in Google Scholar

83. Kuznetsov SA, Mankani MH, Leet AI, Ziran N, Gronthos S, Robey PG: Circulating connective tissue precursors: extreme rarity in humans and chondrogenic potential in guinea pigs. Stem Cells. 2007, 25(7):1830-9.10.1634/stemcells.2007-014017464083Search in Google Scholar

84. Divya MS, Roshin GE, Divya TS, Rasheed VA, Santhoshkumar TR, Elizabeth KE, James J, Pillai RM: Umbilical cord blood-derived mesenchymal stem cells consist of a unique population of progenitors co-expressing mesenchymal stem cell and neuronal markers capable of instantaneous neuronal differentiation. Stem Cell Res Ther. 2012, 19(6):57-73.Search in Google Scholar

85. Huss R, Lange C, Weissinger EM, Kolb HJ, Thalmeier K: Evidence of peripheral bloodderived, plastic-adherent CD34(-/low) hematopoietic stem cell clones with mesenchymal stem cell characteristics. Stem Cells. 2000, 18(4):252-60.10.1634/stemcells.18-4-25210924091Search in Google Scholar

86. Han X, Liu H, Wang D, Su F, Zhang Y, Zhou W, Li S, Yang R: Alveolar bone regeneration around immediate implants using an injectable nHAC/CSH loaded with autogenic bloodacquired mesenchymal progenitor cells: an experimental study in the dog mandible. Clin Implant Dent Relat Res. 2013, 15(3):390-401.10.1111/j.1708-8208.2011.00373.x21745333Search in Google Scholar

87. Kang BJ, Ryu HH, Park SS, Koyama Y, Kikuchi M, Woo HM, Kim WH, Kweon OK: Comparing the osteogenic potential of canine mesenchymal stem cells derived from adipose tissues, bone marrow, umbilical cord blood, and Wharton’s jelly for treating bone defects. J Vet Sci. 2012, 13(3):299-310.10.4142/jvs.2012.13.3.299346740623000587Search in Google Scholar

88. Ryu HH, Kang BJ, Park SS, Kim Y, Sung GJ, Woo HM, Kim WH, Kweon OK: Comparison of mesenchymal stem cells derived from fat, bone marrow, Wharton’s jelly, and umbilical cord blood for treating spinal cord injuries in dogs. J Vet Med Sci. 2012, 74(12):1617-30.10.1292/jvms.12-006522878503Search in Google Scholar

89. Lim JH, Byeon YE, Ryu HH, Jeong YH, Lee YW, Kim WH, Kang KS, Kweon OK: Transplantation of canine umbilical cord blood-derived mesenchymal stem cells in experimentally induced spinal cord injured dogs. J Vet Sci. 2007, 8(3):275-82.10.4142/jvs.2007.8.3.275286813517679775Search in Google Scholar

90. Koerner J, Nesic D, Romero JD, Brehm W, Mainil-Varlet P, Grogan SP: Equine peripheral blood-derived progenitors in comparison to bone marrow-derived mesenchymal stem cells. Stem Cells. 2006, 24(6):1613-9.10.1634/stemcells.2005-026416769763Search in Google Scholar

91. Giovannini S, Brehm W, Mainil-Varlet P, Nesic D: Multilineage differentiation potential of equine blood-derived fibroblast-like cells. Differentiation. 2008, 76(2):118-2910.1111/j.1432-0436.2007.00207.x17697129Search in Google Scholar

92. Koch TG, Heerkens T, Thomsen PD, Betts DH: Isolation of mesenchymal stem cells from equine umbilical cord blood. BMC Biotechnol. 2007, 30(7):26-35.Search in Google Scholar

93. Marfe G, Rotta G, De Martino L, Tafani M, Fiorito F, Di Stefano C, Polettini M, Ranalli M, Russo MA, Gambacurta A: A new clinical approach: use of blood-derived stem cells (BDSCs) for superficial digital flexor tendon injuries in horses. Life Sci. 2012, 90(21-22):825-30.10.1016/j.lfs.2012.03.00422480518Search in Google Scholar

94. Broeckx S, Borena BM, Zimmerman M, Mariën T, Seys B, Suls M, Duchateau L, Spaas JH: Intravenous Application of Allogenic Peripheral Blood-Derived Mesenchymal Stem Cells: a Safety Assessment in 291 Equine Recipients. Curr Stem Cell Res Ther. 2014, DOI: 10.2174/1574888X09666140220003847.10.2174/1574888X0966614022000384724548143Search in Google Scholar

95. Ding Y, Li S, Nie G: Nanotechnological strategies for therapeutic targeting of tumor vasculature. Nanomedicine (Lond). 2013, 8(7):1209-22.10.2217/nnm.13.10623837858Search in Google Scholar

96. Fukuda K, Fujita J: Mesenchymal, but not hematopoietic, stem cells can be mobilized and differentiate into cardiomyocytes after myocardial infarction in mice. Kidney Int. 2005, 68(5):1940-3.10.1111/j.1523-1755.2005.00624.x16221170Search in Google Scholar

97. Bucala R, Spiegel LA, Chesney J, Hogan M, Cerami A: Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair. Mol Med. 1994, 1(1):71-81.10.1007/BF03403533Search in Google Scholar

98. Chesney J, Bacher M, Bender A, Bucala R: The peripheral blood fibrocyte is a potent antigen-presenting cell capable of priming naive T cells in situ. Proc Natl Acad Sci U S A.1997, 94(12):6307-12.10.1073/pnas.94.12.6307210459177213Search in Google Scholar

99. Suga H, Rennert RC, Rodrigues M, Sorkin M, Glotzbach JP, Januszyk M, Fujiwara T, Longaker MT, Gurtner GC: Tracking the elusive fibrocyte: identification and characterization of collagen-producing hematopoietic lineage cells during murine wound healing. Stem Cells. 2014, 32(5):1347-60.10.1002/stem.1648409648824446236Search in Google Scholar

100. Hartlapp I, Abe R, Saeed RW, Peng T, Voelter W, Bucala R, Metz CN: Fibrocytes induce an angiogenic phenotype in cultured endothelial cells and promote angiogenesis in vivo. FASEB J. 2001,15(12):2215-24.10.1096/fj.01-0049com11641248Search in Google Scholar

101. Isgrò M, Bianchetti L, Marini MA, Bellini A, Schmidt M, Mattoli S: The C-C motif chemokine ligands CCL5, CCL11, and CCL24 induce the migration of circulating fibrocytes from patients with severe asthma. Mucosal Immunol. 2013, 6(4):718-27.10.1038/mi.2012.10923149666Search in Google Scholar

102. Scholten D, Reichart D, Paik YH, Lindert J, Bhattacharya J, Glass CK, Brenner DA, Kisseleva T: Migration of fibrocytes in fibrogenic liver injury. Am J Pathol. 2011, 179(1):189-98.10.1016/j.ajpath.2011.03.049312378121703401Search in Google Scholar

103. Mackinnon A, Forbes S: Bone marrow contributions to fibrosis. Biochim Biophys Acta. 2013, 1832(7):955-61.10.1016/j.bbadis.2013.01.02223385196Search in Google Scholar

104. Pilling D, Roife D, Wang M, Ronkainen SD, Crawford JR, Travis EL, Gomer RH: Reduction of bleomycin-induced pulmonary fibrosis by serum amyloid P. J Immunol. 2007, 179(6):4035-44.10.4049/jimmunol.179.6.4035448234917785842Search in Google Scholar

105. Knežević M, Gledić D, Kukolj V, Knežević Dj, Jovanović M, Božić T, Aleksić-Kovačević S: Expression of α-SMA, desmin and vimentin in canine liver with fibrosis. Acta Vet (Beograd) 2009, 59(4):361-370.10.2298/AVB0904361KSearch in Google Scholar

106. Aleksić-Kovačević S, Kukolj V, Kureljušić B, Marinković D, Knežević Dj, Ignjatović I, Jovanović M, Knežević M, Gledić D: Role of hepatic stellate cells (HSCs) in development of hepatic fibrosis in cats with polycystic kidney disease (PKD). Acta Vet (Beograd) 2010, 60(4):391-400.10.2298/AVB1004391ASearch in Google Scholar

107. Lilja-Maula L, Syrjä P, Laurila HP, Sutinen E, Rönty M, Koli K, Rajamäki MM, Myllärniemi M: Comparative Study of Transforming Growth Factor-β Signalling and Regulatory Molecules in Human and Canine Idiopathic Pulmonary Fibrosis. J Comp Pathol. 2013, 150(4):399-407.Search in Google Scholar

108. Williams KJ: Gamma herpesviruses and pulmonary fibrosis: evidence from humans, horses, and rodents. Vet Pathol. 2014, 51(2):372-84.10.1177/030098581452183824569614Search in Google Scholar

109. Marinković D, Kukolj V, Aleksić-Kovačević S, Jovanović M, Knežević M: The role of hepatic myofibroblasts in liver cirrhosis in fallow deer (Dama dama) naturally infected with giant liver fluke (Fascioloides magna). BMC Vet Res. 2013, 6(9):45-51.Search in Google Scholar

110. Roman J, Brown KK, Olson A, Corcoran BM, Williams KJ: ATS Comparative Biology of Lung Fibrosis Working Group. An official American Thoracic Society workshop report: comparative pathobiology of fibrosing lung disorders in humans and domestic animals. Ann Am Thorac Soc. 2013, 10(6):S224-9.10.1513/AnnalsATS.201309-321ST24364785Search in Google Scholar

111. Horňák S, Harvanová D, Ledecký V, Hluchý M, Valenčáková-Agyagosová A, Amrichová J, Rosocha J, Vaško G, Švihla R, Petrovič V. Reparation of chondral defects in rabbits by autologous and allogenous chondrocytes seeded on collagen/hyaluronan scaffold or suspended in fibrin glue. Acta veterinaria-Beograd, 64 (2014):61-72.10.2478/acve-2014-0007Search in Google Scholar

112. Arsenović-Ranin N, Nacka-Aleksić M, Djikić J, Perišić M, Kosec D, Pilipović I, Stojić- Vukanić Z, Leposavić G: Thymocyte apoptosis and proliferation modeling during rat thymic involution is influenced by ovarian hormones in a thymocyte subset-specific manner. Acta veterinaria-Beograd, 2013, 63 (1): 3-2110.2298/AVB1301003ASearch in Google Scholar

113. Vojvodić D, Miljanović O, Đurđević D, Gatarić S, Stanojević I, Obradović D, Šurbatović M, Francuski J: Effects of different anesthetic agents on GM-CSF, MCP1, IL1 and TNF levels in rat sepsis mode. Acta veterinaria-Beograd, 2013 63(2-3):125-136.10.2298/AVB1303125VSearch in Google Scholar

114. Lamagna C, Bergers G: The bone marrow constitutes a reservoir of pericyte progenitors. J Leukoc Biol. 2006, 80(4):677-81.10.1189/jlb.050630916888086Search in Google Scholar

115. Merkulova-Rainon T, Broquères-You D, Kubis N, Silvestre JS, Lévy BI: Towards the therapeutic use of vascular smooth muscle progenitor cells. Cardiovasc Res. 2012, 95(2):205-14.10.1093/cvr/cvs09722354897Search in Google Scholar

116. Pignolo RJ, Kassem M: Circulating osteogenic cells: implications for injury, repair, and regeneration. J Bone Miner Res. 2011, 26(8):1685-93.10.1002/jbmr.37021538513Search in Google Scholar

117. Kucia M, Halasa M, Wysoczynski M, Baskiewicz-Masiuk M, Moldenhawer S, Zuba- Surma E, Czajka R, Wojakowski W, Machalinski B, Ratajczak MZ: Morphological and molecular characterization of novel population of CXCR4+ SSEA-4+ Oct-4+ very small embryonic-like cells purified from human cord blood: preliminary report. Leukemia. 2007, 21(2):297-303.10.1038/sj.leu.240447017136117Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo