1. bookVolume 13 (2020): Issue 2 (October 2020)
Journal Details
First Published
10 Dec 2012
Publication timeframe
2 times per year
access type Open Access

Dimethyl sulfoxide as a strongly coordinating solvent: 3′,4′-dihydroxyflavone-Cu(II)-DMSO system case study

Published Online: 18 Nov 2020
Page range: 38 - 48
Journal Details
First Published
10 Dec 2012
Publication timeframe
2 times per year

Dimethyl sulfoxide (DMSO) is an aprotic organic solvent widely used in laboratory practice due to its ability to dissolve both polar and nonpolar compounds. However, DMSO is also commonly known as a strongly coordinating solvent, especially towards transition metal containing complexes. In this study, estimation of the coordination ability of DMSO towards the Cu(II) ion was attempted, employing a model system composed of 3′,4′-dihydroxyflavone-Cu(II) complex in the presence of explicit DMSO molecules, using the density functional theory (DFT). Nature of the Cu-DMSO chemical interaction (i.e. Cu-O bonding) was studied within the framework of quantum theory of atoms in molecules (QTAIM). Impact of DMSO coordination on the charge and spin distribution at Cu(II) ion was inspected using Mulliken population and QTAIM analysis.


Abreu CD, Ottoni MHG, Dos Santos MG et al. (2017) Molecules 22: 1—10.Search in Google Scholar

Acker SABE van, de Groot MJ, van der Berg JD et al. (1996) Chem. Res. Toxicol. 9: 1305—1312.Search in Google Scholar

Allen FH (2002) Acta Crystallographica Section B: Structural Science 58: 380—388.Search in Google Scholar

Allen MJ, Boyce JP, Trentalange TM et al. (2008) Biotechnology and Bioengineering 100: 1193—1204.Search in Google Scholar

Almeida de KJ, Ramalho TC, Rinkevicius R et al. (2011) J. Phys. Chem. A 115: 1331—1339.Search in Google Scholar

Autschbach J (2014) Phil. Trans. R. Soc. A 372: 20120489.Search in Google Scholar

Bader RFW (1990) Atoms in Molecules: A Quantum Theory. Oxford: Oxford University Press.Search in Google Scholar

Bader RFW, Stephens ME (1975) J. Am. Chem. Soc. 97: 7391—7399.Search in Google Scholar

Becke AD (1988) Phys. Rev. A 38: 3098—3100.Search in Google Scholar

Becke AD (1993) The Journal of Chemical Physics 98: 5648—5652.Search in Google Scholar

Calligaris M (1999) Croatica Chemica Acta 72: 147—169.Search in Google Scholar

Cioslowski J, Surján PR (1992) Journal of Molecular Structure: THEOCHEM 255: 9—33.Search in Google Scholar

Dıaz-Torres R, Alvarez S (2011) Dalton Transactions 40: 10742—10750.Search in Google Scholar

Dorotíková S, Kožíšková J, Malček M et al. (2015) Journal of Inorganic Biochemistry 150: 160—73.Search in Google Scholar

Eilmes A (2014) Theoretical Chemistry Accounts 133: 1538.Search in Google Scholar

Fermi E (1930) Z. Phys. 60: 320.Search in Google Scholar

Flükiger P, Lüthi HP, Portmann S, Weber J (2002) “‘MOLEKEL 4.3.’ Swiss Center for Scientific Computing: Manno, Switzerland.Search in Google Scholar

Fradera X, Austen AM, Bader RFW (1999) J. Phys. Chem. A 103: 304—314.Search in Google Scholar

Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE et al. (2009) “Gaussian 09, Revision D.01.” Gaussian, Inc., Wallingford CT.Search in Google Scholar

Grazul M, Budzisz E (2009) Coord. Chem. Rev. 253: 2588—2598.Search in Google Scholar

Guerard JJ, Arey JS (2013) Journal of Chemical Theory and Computation 9: 5046—5058.Search in Google Scholar

Gutmann V (1978) The Donor-Acceptor Approach to Molecular Interactions. New York: Springer US.Search in Google Scholar

Haase PAB, Repisky M, Komorovsky S et al. (2018) Chemistry — A European Journal 24: 5124—5133.Search in Google Scholar

Jomová K, Hudecova L, Lauro P et al. (2019) Molecules 24: 4335.Search in Google Scholar

Keith AT “AIMAll, Version 14.04.17; TK Gristmill Software: Overland Park, KS, 2014 (Aim.Tkgristmill. Com).”Search in Google Scholar

Krishnan R, Binkley JS, Seeger R et al. (1980) J. Chem. Phys. 72: 650—654.Search in Google Scholar

Kumar S, Pandey KA (2013) The Scientific World Journal, 162750.Search in Google Scholar

Lee Ch, Yang W, Parr GR (1988) Phys. Rev. B 37: 785—789.Search in Google Scholar

Levchenkov SI, Hcherbakov IN, Popov LD et al. (2014) Russian Journal of Coordination Chemistry 40: 523—530.Search in Google Scholar

Malček M, Bučinský L, Valko M et al. (2015) Journal of Molecular Modeling 21: 237.Search in Google Scholar

Malkin E, Malkin I, Malkina OL et al. (2006) Phys. Chem. Chem. Phys. 8: 4079—4085.Search in Google Scholar

Malkin E, Repiský M, Komorovský S et al. (2011) Journal of Chemical Physics 134: 044111.Search in Google Scholar

Marenich VA, Cramer ChJ, Truhlar DG (2009) Journal of Physical Chemistry B 113: 6378—6396.Search in Google Scholar

McLean AD, Chandler GS (1980) J. Chem. Phys. 72: 5639—5648.Search in Google Scholar

Miertus S, Scrocco E, Tomasi J (1981) Chem. Phys. 55: 117—129.Search in Google Scholar

Miguel ELM, Santos CIL, Silva CM et al. (2016) Journal of the Brazilian Chemical Society 27: 2055—2061.Search in Google Scholar

Misuri L, Cappiello M, Balestri F et al. (2017) Journal of Enzyme Inhibition and Medicinal Chemistry 32: 1152—1158.Search in Google Scholar

Mulliken RS (1955) The Journal of Chemical Physics 23: 1833.Search in Google Scholar

Neese F (2003) J. Chem. Phys. 118: 3939—3948.Search in Google Scholar

Patra M, Pierroz VA et al. (2013) Chemistry — A European Journal 19: 14768—14772.Search in Google Scholar

Protti S, Mezzetti A, Cornard JP et al. (2008) Chemical Physics Letters 467: 88—93.Search in Google Scholar

Psomas G, Kessissoglou DP (2013) Dalton Transactions 42: 6252—6276.Search in Google Scholar

Rancan M, Armelao L (2015) Chemical Communications 51: 12947—12949.Search in Google Scholar

Rancan M, Carlotto A, Bottaro G et al. (2019) Inorganics 7: 103.Search in Google Scholar

Roothaan CCJ (1951) Reviews of Modern Physics 23: 69—89.Search in Google Scholar

Roy S, Banerjee S, Biyani N (2011) Journal of Physical Chemistry B 115: 685—692.Search in Google Scholar

Samsonowicz M, Regulska E (2017) Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 173: 757—771.Search in Google Scholar

Saytzeff A (1867) Ann Der Chem Und Pharm 144: 148—156.Search in Google Scholar

Sergievskii VV, Skorobogat’Ko DO, Rudakov AM (2010) Russian Journal of Physical Chemistry A 84: 350—355.Search in Google Scholar

Šimunkova M, Lauro P, Jomova K et al. (2019) Journal of Inorganic Biochemistry 194: 97—113.Search in Google Scholar

Šimunková M, Valko M, Bučinský L et al. (2020) J. Mol. Struct. 1222: 128923.Search in Google Scholar

Singh Y, Ghosh T (2016) Talanta 148: 257—263.Search in Google Scholar

Sládek V, Lukeš V, Breza M (2011) Computational and Theoretical Chemistry 963: 503—509.Search in Google Scholar

Sudo R, Yoshioka D, Mikuriya M et al. (2012) X-Ray Structure Analysis Online 28: 71—72.Search in Google Scholar

Tashrifi Z, Khanaposhtani MM, Larijani B et al. (2020) Advanced Synthesis and Catalysis 362: 65—86.Search in Google Scholar

Tomasi J, Mennucci B, Cammi R (2005) Chem. Rev. 105: 2999—3093.Search in Google Scholar

Tunçer S, Gurbanov R, Sheraj I et al. (2018) Scientific Reports 8: 14828.Search in Google Scholar

Vosko SH, Wilk Nusair M (1980) Canadian Journal of Physics 58: 1200—1211.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo