1. bookVolume 12 (2019): Issue 1 (April 2019)
Journal Details
License
Format
Journal
eISSN
1339-3065
First Published
10 Dec 2012
Publication timeframe
2 times per year
Languages
English
access type Open Access

On local aromaticity of selected model aza-[n]circulenes (n = 6, 7, 8 and 9): Density functional theoretical study

Published Online: 09 Jul 2019
Volume & Issue: Volume 12 (2019) - Issue 1 (April 2019)
Page range: 70 - 81
Journal Details
License
Format
Journal
eISSN
1339-3065
First Published
10 Dec 2012
Publication timeframe
2 times per year
Languages
English
Abstract

A computational study using density functional theory is reported for selected model aza[n]circulenes (n = 6, 7, 8 and 9) and their derivatives consisting of pyrrole and benzene units. Local aromaticity of central rings was discussed and analyzed using theoretical structural indices. Depending on their molecular structures, energies of the highest occupied and lowest unoccupied molecular orbitals change from –5.23 eV to –4.08 eV and from –1.97 eV to –0.41 eV, respectively. Based on B3LYP calculated optimal geometries, electronic structure of molecules and their charge transport properties resulted in the suggestion of three planar molecules containing three or four pyrrole units as potential candidates for p-type semiconductors. Hole drift mobilities for ideal stacked dimers of these potential semiconductors were calculated and they range from 0.94 cm2·V−1·s−1 to 7.33 cm2·V−1·s−1.

Keywords

Bag S, Maiti PK (2017) Phys. Rev. B 96(24): 245401. Doi: https://doi.org/10.1103/PhysRevB.96.245401.10.1103/PhysRevB.96.245401Search in Google Scholar

Barth WE, Lawton RG (1966) J. Am. Chem. Soc. 88:380. Doi: https://doi.org/10.1021/ja00954a049.10.1021/ja00954a049Search in Google Scholar

Becke AD (1988) Phys Rev A 38: 3098—3100. Doi: https://doi.org/10.1103/PhysRevA.38.3098.10.1103/PhysRevA.38.3098Search in Google Scholar

Bharat, Bhola, R, Bally T, Valente A, Cyrański MK, Dobrzycki Ł, Spain SM, Rempała P, Chin MR, King BT (2010) Angew. Chem. Int. Ed. 49: 399. Doi: https://doi.org/10.1002/anie.200905633.10.1002/anie.20090563319957259Search in Google Scholar

Boys SF, Bernardi F (1970) Mol Phys 19: 553—566. Doi: https://doi.org/10.1080/00268977000101561.10.1080/00268977000101561Search in Google Scholar

Brédas JL, Beljonne D, Coropceanu V, Cornil J (2004)Search in Google Scholar

Chem Rev 104: 4971—5003. Doi: https://doi.org/10.1021/cr040084k.10.1021/cr040084k15535639Search in Google Scholar

Chai W, Jin R (2016) J. Mol. Struct. 1103: 177—182. Doi: https://doi.org/10.1016/j.molstruc.2015.09.023.10.1016/j.molstruc.2015.09.023Search in Google Scholar

Chang YC, Kuo MY, Chen CP, Lu HF, Chao I (2010) J. Phys. Chem. C. 114: 11595—11601. Doi: https://doi.org/10.1021/jp1025625.10.1021/jp1025625Search in Google Scholar

Chernichenko KY, Sumerin VV, Shpanchenko RV, Balenkova ES and Nenajdenko G (2006) Angew. Chem. 45(44): 7367—7370. Doi: https://doi.org/10.1002/anie.200602190.10.1002/anie.20060219017001717Search in Google Scholar

Christoph H, Grunenberg J, Hopf H, Dix I, Jones PG, Scholtissek M, Maier G (2008) Chem. Eur. J. 14: 5604. Doi: https://doi.org/10.1002/chem.200701837.10.1002/chem.20070183718478614Search in Google Scholar

Cornil J, Lemaur V, Calbert JP, Brédas JL (2002) Adv Mater 14: 726. Doi: https://doi.org/10.1002/1521-4095(200107)13:14<1053::AIDADMA1053>3.0.CO;2-7.Search in Google Scholar

Da Silva Filho DA, Kim EG, Brédas JL (2005) Adv. Mater. 17: 1072—1076. Doi: https://doi.org/10.1002/adma.200401866.10.1002/adma.200401866Search in Google Scholar

Dadvand A, Cicoira F, Chernichenko YK, Balenkova ES, Osuna RM, Rosei F, Nenajdenko VG, Perepichka DF (2008) Chem. Commun. 42: 5354—5356. Doi: https://doi.org/10.1039/B809259A.10.1039/b809259aSearch in Google Scholar

Datta A, Pati SK (2007) J. Phys. Chem. C 19: 4487—4490. Doi: https://doi.org/10.1021/jp070609n.10.1021/jp070609nSearch in Google Scholar

Eichkorn K, Treutler O, Ohm H, Haser M, Ahlrichs R (1995) Chem. Phys. Lett., 240: 283—289. Doi: https://doi.org/10.1016/0009-2614(95)00621-A.10.1016/0009-2614(95)00621-ASearch in Google Scholar

Eichkorn K, Weigend F, Treutler O, Ahlrichs R (1997) Theor. Chem. Acc. 97: 119—124. Doi: https://doi.org/10.1007/s002140050244.10.1007/s002140050244Search in Google Scholar

Feng CN, Kuo MY, Wu YT (2013) Angew. Chem. Int. Ed. 52: 7791. Doi: https://doi.org/10.1002/anie.201303875.10.1002/anie.20130387523794166Search in Google Scholar

Flukiger P, Luthi HP, Sortmann S, Weber J (2002) Molekel 4.3, Swiss National Supercomputing Centre, Manno, Switzerland.Search in Google Scholar

Friederich P, Meded V, Poschlad A, Neumann T, Rodin V, Stehr V, Symalla F, Danilov D, Lüdemann G, Fink RF, Kondov I, von Wrochem F, Wenzel W (2016) Adv. Funct. Mater. 26: 5757—5763. Doi: https://doi.org/10.1002/adfm.201601807.10.1002/adfm.201601807Search in Google Scholar

Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr., Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision D.01, Gaussian Inc. Wallingford CT, Gaussian 09 Revis. C.01. (2010) Gaussian Inc., Wallingford CT. Doi: https://doi.org/10.1017/CBO9781107415324.004.10.1017/CBO9781107415324.004Search in Google Scholar

Frizzo CP, Martins MAP (2012) Struct Chem 23: 375—380. Doi: https://doi.org/10.1007/s11224-011-9883-z.10.1007/s11224-011-9883-zSearch in Google Scholar

Gahungu G, Zhang J, Barancira T (2009) J. Phys. Chem. A 113: 255—262. Doi: https://doi.org/10.1021/jp804986b.10.1021/jp804986b19072112Search in Google Scholar

Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132(15): 154104. Doi: https://doi.org/10.1063/1.3382344.10.1063/1.3382344Search in Google Scholar

Hensel T, Andersen NN, Plesner M, Pittelkow M (2016) Synlett. 27(04): 498—525. Doi: https://doi.org/10.1055/s-0035-1560524.10.1055/s-0035-1560524Search in Google Scholar

Hohenberg P, Kohn W (1964) Phys. Rev. 136: B864—B871. Doi: https://doi.org/10.1103/PhysRev.136.B864.10.1103/PhysRev.136.B864Search in Google Scholar

Huong VTT, Tai TB, Nguyen MT (2012) Phys. Chem. Chem. Phys. 14: 14832—14841. Doi: https://doi.org/10.1039/C2CP42474F.10.1039/c2cp42474fSearch in Google Scholar

Huong VTT, Tai TB, Nguyen MT (2015) RSC Adv. 5: 24167—24174. Doi: https://doi.org/10.1039/C4RA16485G.10.1039/C4RA16485GSearch in Google Scholar

Larsson S, Klimkans A, Rodriguez-Monge L, Duskesas G (1998) Theochem-Journal Mol. Struct. 425: 155—159. Doi: https://doi.org/10.1016/S0166-1280(97)00216-9.10.1016/S0166-1280(97)00216-9Search in Google Scholar

Lee C, Yang W, Parr RG (1988) Phys Rev B 37: 785—789. Doi: https://doi.org/10.1103/PhysRevB.37.785.10.1103/PhysRevB.37.7859944570Search in Google Scholar

Lin YY, Gundlach DJ, Nelson SF, Jackson TN (1997) IEEE Electron Device Lett. 18: 606—608. Doi: https://doi.org/10.1109/55.644085.10.1109/55.644085Search in Google Scholar

Liu CC, Mao SW, Kuo MY (2010) J. Phys. Chem. C. 114: 22316—22321. Doi: https://doi.org/10.1021/jp1099464.10.1021/jp1099464Search in Google Scholar

Lukeš V, Cagardová D, Michalík M, Poliak P (2018) Synt. Met. 240: 67—76. Doi: https://doi.org/10.1016/j.synthmet.2018.03.014.10.1016/j.synthmet.2018.03.014Search in Google Scholar

Maier SA, Ankerhold J (2010) Phys. Rev. E 81: 021107. doi: https://doi.org/10.1103/PhysRevE.81.021107.10.1103/PhysRevE.81.021107Search in Google Scholar

Malagoli M, Brédas JL (2000) Chem Phys Lett 327: 13—17. Doi: https://doi.org/10.1016/S0009-2614(00)00757-0.10.1016/S0009-2614(00)00757-0Search in Google Scholar

Malagoli M, Coropceanu V, Da Silva Filho DA, Brédas JL (2004) J. Chem. Phys. 120: 7490—7496. Doi: https://doi.org/10.1063/1.1687675.10.1063/1.168767515267661Search in Google Scholar

Marcus RA (1993) Rev Mod Phys 65: 599—610. Doi: https://doi.org/10.1103/RevModPhys.65.599.10.1103/RevModPhys.65.599Search in Google Scholar

Mohakud S, Pati SK (2009) J. Mater. Chem.19: 4356—4361. Doi: https://doi.org/10.1039/B901014A.10.1039/b901014aSearch in Google Scholar

Murphy AR, Fréchet JMJ (2007) Chem. Rev. 107: 1066—1096. Doi: https://doi.org/10.1021/cr0501386.10.1021/cr050138617428023Search in Google Scholar

Nagata Y, Kato S, Miyake Y, Shinokubo H (2017) Org. Lett. 19: 2718—2721. Doi: https://doi.org/10.1021/acs.orglett.7b01074.10.1021/acs.orglett.7b0107428489399Search in Google Scholar

Nan G, Shi Q, Shuai Z, Li Z (2011) Phys. Chem. Chem. Phys. 13: 9736—9746. Doi: https://doi.org/10.1039/C1CP00001B.10.1039/c1cp00001b21503350Search in Google Scholar

Ośmiałowski B, Raczyńska ED, Krygowski TM (2006) J Org Chem 71(10): 3727—3736. Doi: https://doi.org/10.1021/jo052615q.10.1021/jo052615q16674042Search in Google Scholar

Runge E, Gross EKU (1984) Phys. Rev. Lett. 52: 997—1000. doi: https://doi.org/10.1103/PhysRevLett.52.997.10.1103/PhysRevLett.52.997Search in Google Scholar

Sakamoto Y, Suzuki T (2013) J. Am. Chem. Soc. 135(38): 14074—14077. Doi: https://doi.org/10.1021/ja407842z.10.1021/ja407842z24015972Search in Google Scholar

Sakanoue K, Motoda M, Sugimoto M, Sakaki S (1999) J Phys Chem A 103: 5551—5556. Doi: https://doi.org/10.1021/jp990206q.10.1021/jp990206qSearch in Google Scholar

Scholl R; Meyer K (1932) Ber. Dtsch. Chem. Ges. 65: 902. Doi: https://doi.org/10.1002/cber.19370701104. Sigma Aldrich (2019) website: https://www.sigmaaldrich.com/.10.1002/cber.19320650603Search in Google Scholar

Simon S, Duran M, Dannenberg JJ (1996) J. Chem. Phys. 105: 11024—11031. Doi: https://doi.org/10.1063/1.472902.10.1063/1.472902Search in Google Scholar

Wang L, Li P, Xu B, Zhang H, Tian W (2014) Org. Electron. 15: 2476—2485. Doi: https://doi.org/10.1016/j.orgel.2014.07.003.10.1016/j.orgel.2014.07.003Search in Google Scholar

Xantheas SS (1996) J. Chem. Phys. 104: 8821—8824. Doi: https://doi.org/10.1063/1.471605.10.1063/1.471605Search in Google Scholar

Xiong X, Deng CL, Li Z, Peng XS, Wong HNC (2017) Org. Chem. Front. 4(5): 682—687. Doi: https://doi.org/10.1039/C6QO00662K.10.1039/C6QO00662KSearch in Google Scholar

Yakuphanoglu F, Mansouri S, Bourguiga R (2012) Synt. Met. 162: 918—923. Doi: https://doi.org/10.1016/j.synthmet.2012.04.003.10.1016/j.synthmet.2012.04.003Search in Google Scholar

Yamamoto K, Harada T, Nakazaki M, Naka T, Kai Y, Harada S, Kasai N (1983) J. Am. Chem. Soc. 105: 7171. Doi: https://doi.org/10.1021/ja00362a025.10.1021/ja00362a025Search in Google Scholar

Zheng J, Xu X, Truhlar DG (2011) Theor Chem Acc 128: 295. Doi: https://doi.org/10.1007/s00214-010-0846-z.10.1007/s00214-010-0846-zSearch in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo