1. bookVolume 11 (2018): Issue 2 (October 2018)
Journal Details
License
Format
Journal
eISSN
1339-3065
First Published
10 Dec 2012
Publication timeframe
2 times per year
Languages
English
Open Access

The design and NMR structure determination of yttrium-oligopeptide tags for recombinant proteins and antibodies

Published Online: 19 Dec 2018
Volume & Issue: Volume 11 (2018) - Issue 2 (October 2018)
Page range: 120 - 133
Journal Details
License
Format
Journal
eISSN
1339-3065
First Published
10 Dec 2012
Publication timeframe
2 times per year
Languages
English
Abstract

A strategy for the design of new yttrium(III) tags consisting of sequences of naturally occurring amino acids is described. These tags are 4–6 amino acids in length and consist of aspartic and glutamic acids. The use of natural amino acids would allow these oligopeptides to be incorporated into recombinant proteins at the DNA level, enabling the protein to be Y(III)-labelled after protein isolation. This allows a radionuclide or heavy atom to be associated with the protein without the necessity of further synthetic modification. Suitable peptides able to chelate Y(III) in stable complexes were designed based on quantum-chemical calculations. The stability of complexes formed by these peptides was tested by isothermal titration calorimetry, giving dissociation constants in the micromolar range. The likely structure of the most tightly bound complex was inferred from a combination of NMR experiments and quantum-chemical calculations. This structure will serve as the basis for future optimizations.

Keywords

Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98: 5648–5652.10.1063/1.464913Search in Google Scholar

Bentrop D, Bertini I, Cremonini MA, Forsen S, Luchinat C, Malmendal A (1997) Solution structure of the paramagnetic complex of the N-terminal domain of calmodulin with two Ce3+ ions by 1H NMR. Biochemistry 36: 11605–11618.10.1021/bi971022+Search in Google Scholar

Branden C, Tooze J (1999) Introduction to Protein Structure, 2nd ed. Garland Publishing, New York.Search in Google Scholar

Chaudhuri BN, Lange SC, Myers RS, Chittur SV, Davisson VJ, Smith JL (2001) Crystal Structure of Imidazole Glycerol Phosphate Synthase: A Tunnel through a (β/α)8 Barrel Joins Two Active Sites. Structure 9: 987–997.10.1016/S0969-2126(01)00661-XSearch in Google Scholar

Frisch MJT, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr., Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, Revision C.1. Gaussian, Inc., Pittsburgh (PA).Search in Google Scholar

Goodwin DA, Meares CF (2001) Advances in pretargeting biotechnology. Biotechnol Adv 19: 435–450.10.1016/S0734-9750(01)00065-9Search in Google Scholar

Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J Chem Phys 82: 299–310.10.1063/1.448975Search in Google Scholar

Hlinkova V, Xing GX, Bauer J, Shin YJ, Dionne I, Rajashankar KR, Bell SD, Ling H (2008) Structures of monomeric, dimeric and trimeric PCNA: PCNA-ring assembly and opening. Acta Crystallogr D Biol Crystallogr 64: 941–949.10.1107/S0907444908021665Search in Google Scholar

Hsieh WY, Liu S (2004) Synthesis, Characterization, and Structures of Indium In(DTPA-BA2) and Yttrium Y(DTPA-BA2)(CH3OH) Complexes (BA = Benzylamine): Models for 111In-and 90Y-Labeled DTPA-Biomolecule Conjugates. Inorg Chem 43: 6006–6014.10.1021/ic049973gSearch in Google Scholar

Hyperchem. Release 7.5 for Windows. (2002) HyperCube, Inc. Gainesville, FL.Search in Google Scholar

Inoue MB, Inoue M, Munoz IC, Bruck MA, Fernando Q (1993) Syntheses of new 15-membered and 16-membered macrocyclic ligands with three pendant acetato groups and the structures of the gadolinium(III) complexes. Inorg Chim Acta 209: 29–34.10.1016/S0020-1693(00)84976-2Search in Google Scholar

Keith TA, Bader RFW (1992) Calculation of magnetic response properties using atoms in molecules. Chem Phys Lett 194: 1–8.10.1016/0009-2614(92)85733-QSearch in Google Scholar

Keith TA, Bader RFW (1993) Calculation of Magnetic Response Properties Using a Continuous Set of Gauge Transformations. Chem Phys Lett 210: 223–231.10.1016/0009-2614(93)89127-4Search in Google Scholar

Krishnan R, Binkley JS, Seeger R, Pople JA (1980) Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J Chem Phys 72: 650.10.1063/1.438955Search in Google Scholar

Liu S, Edwards DS (2001) Bifunctional Chelators for Therapeutic Lanthanide Radiopharmaceuticals. Bioconjugate Chem 12: 7–34.10.1021/bc000070vSearch in Google Scholar

Martin LJ, Hahnke MJ, Nitz M, Wöhnert J, Silvaggi NR, Allen KN, Schwalbe H, Imperiali B (2007) Doublelanthanide-binding tags: Design, photophysical properties, and NMR applications. J Am Chem Soc 129: 7106–7113.10.1021/ja070480vSearch in Google Scholar

Mather SJ (2007) Design of radiolabelled ligands for the imaging and treatment of cancer. Mol Biosyst 3: 30–35.10.1039/B611736HSearch in Google Scholar

Mustafi SM, Mukherjee S, Chary KVR, Cavallaro G (2006) Structural basis for the observed differential magnetic anisotropic tensorial values in calcium binding proteins. Proteins 65: 656–669.10.1002/prot.21121Search in Google Scholar

Nakao YM, Mori W, Sakurai T, Nakahara A (1981) The monomeric and dimeric copper(II) complexes containing imidazole and dipeptides. Inorg Chim Acta 55: 103–107.10.1016/S0020-1693(00)90790-4Search in Google Scholar

Nitz M, Sherawat M, Franz KJ, Peisach E, Allen KN, Imperiali B (2004) Structural Origin of the High Affinity of a Chemically Evolved Lanthanide-Binding Peptide. Angew Chem Int Ed 43: 3682–3685.10.1002/anie.20046002815248272Search in Google Scholar

Pearson RG (1963) Hard and Soft Acids and Bases. J Am Chem Soc 85: 3533–3539.10.1021/ja00905a001Search in Google Scholar

Pearson RG (1968a) Hard and soft acids and bases, HSAB, part 1: Fundamental principles. J Chem Ed 45: 581–586.10.1021/ed045p581Search in Google Scholar

Pearson RG (1968b) Hard and soft acids and bases, HSAB, part II: Underlying theories. J Chem Ed 45: 643–647.10.1021/ed045p643Search in Google Scholar

Silvaggi NR, Martin LJ, Schwalbe H, Imperiali B, Allen KN (2007) Double-Lanthanide-Binding Tags for Macromolecular Crystallographic Structure Determination. J Am Chem Soc 129: 7114–7120.10.1021/ja070481n17497863Search in Google Scholar

Welch JT, Kearney WR, Franklin SJ (2003) Lanthanidebinding helix-turn-helix peptides: Solution structure of a designed metallonuclease. Proc Natl Acad Sci USA 100: 3725–3730.10.1073/pnas.053656210015298912644701Search in Google Scholar

Xing GX, Hlinkova V, Ling H (2007) Purification, Crystallization and Preliminary Diffraction Studies of the Sulfolobus solfataricus PCNA Proteins in Different Oligomeric Forms. Cryst Growth Des 7: 2202–2205.10.1021/cg700961bSearch in Google Scholar

Xue S, Qiao J, Jiang J, Hubbard K, White N, Wei L, Li S, Liu ZR, Yang JJ (2014) Design of ProCAs (protein-based Gd(3+) MRI contrast agents) with high dose efficiency and capability for molecular imaging of cancer biomarkers. Med Res Rev 34: 1070–1099.10.1002/med.2131324615853Search in Google Scholar

Yang W, Wilkins AL, Ye Y, Liu ZR, Li SY, Urbauer JL, Hellinga HW, Kearney A, van der Merwe PA, Yang JJ (2005) Design of a calcium-binding protein with desired structure in a cell adhesion molecule. J Am Chem Soc 127: 2085–2093.10.1021/ja043130715713084Search in Google Scholar

Yang, JJ, Yang J, Wei L, Zurkiya O, Yang W, Li S, Zou J, Zhou Y, Maniccia ALW, Mao H, Zhao F, Malchow R, Zhao S, Johnson J, Hu X, Krogstad E, Liu ZR (2008) Rational Design of Protein-Based MRI Contrast Agents. J Am Chem Soc 130: 9260–9267.10.1021/ja800736h269203518576649Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo