1. bookVolume 11 (2018): Issue 2 (October 2018)
Journal Details
License
Format
Journal
eISSN
1339-3065
First Published
10 Dec 2012
Publication timeframe
2 times per year
Languages
English
access type Open Access

An overview of main arsenic removal technologies

Published Online: 19 Dec 2018
Volume & Issue: Volume 11 (2018) - Issue 2 (October 2018)
Page range: 107 - 113
Journal Details
License
Format
Journal
eISSN
1339-3065
First Published
10 Dec 2012
Publication timeframe
2 times per year
Languages
English
Abstract

Arsenic (As) is metalloid, naturally present in the environment but also introduced by human activities. It is toxic and carcinogenic and its exposure to low or high concentrations can be fatal to human health. Arsenic contamination in drinking water threatens more than 150 million peoples all over the world. Therefore, treatment of As contaminated water is of unquestionable importance. The present review begins with an overview of As chemistry, distribution and toxicity, which are relevant aspects to understand and develop remediation techniques. The most common As removal processes (chemical precipitation, adsorption, ion exchange, membrane filtration, phytoremediation and electrocoagulation) are presented with discussion of their advantages, drawbacks and the main recent achievements.

Keywords

Choong TSY, Chuah TG, Robiah Y, Gregory KFL, Azni I (2007) Desalination 217: 139–166.10.1016/j.desal.2007.01.015Search in Google Scholar

Dambies L (2004) Sep. Sci. Technol 39: 603–627.Search in Google Scholar

Donia AM, Atia AA, Mabrouk DA (2011) J. Hazard. Mater. 191: 1–7.Search in Google Scholar

Edwards M (1994) Journal Am. Water Works Assoc. 79: 81–84.Search in Google Scholar

Gregor J (2001) Water Res. 35: 1659–1664.Search in Google Scholar

Han C, Li H, Pu H, Yu H, Deng L, Huang S, Luo Y (2013) Chem. Eng. J. 217: 1–9.Search in Google Scholar

Höll WH (2010) Environ. Geochem. Health. 32: 287–290.Search in Google Scholar

Hung DQ, Nekrassova O, Compton RG (2004) Talanta 64: 269–277.10.1016/j.talanta.2004.01.027Search in Google Scholar

IARC – International Agency for Research and Cancer (2012) Arsenic, Metals, Fibres and Dusts. IARC, Lyon.Search in Google Scholar

Karim MM (2000) Water Res. 34: 304–310.Search in Google Scholar

Katsoyiannis IA, Zouboulis AI (2004) Water Res. 38: 17–26.Search in Google Scholar

Li L, Li J, Shao Ch, Zhang K, Yu S, Gao N, Deng Y, Ying D (2014) Separation and Purufication Technology 122: 225–230.10.1016/j.seppur.2013.11.012Search in Google Scholar

Ma LQ, Komar KM, Tu C, Zhang W, Cai Y, Kennelley ED (2001) Nature 409: 579.10.1038/35054664Search in Google Scholar

Mackenzie FT, Lantzy RJ, Paterson V (1979) J. Int. Assoc. Math. Geol. 11: 99–142.Search in Google Scholar

Madejón P, Murillo JM, Maranón T, López R (2002) Sci. Total Environ. 290: 105–120.Search in Google Scholar

Mascher R, Lippmann B, Holzinger S, Bergmann H (2002) Plant Sci.163: 961–969.Search in Google Scholar

Mohan D, Pittman CU Jr (2007) Journal of Hazardous Materials: 1–53.Search in Google Scholar

Mondal P, Majumder CB, Mohanty B (2006) J. Hazard. Mater. 137: 464–479.Search in Google Scholar

Pubchem – Open Chemistry Database (2018, October 11) (available at https://pubchem.ncbi.nlm.nih.gov).Search in Google Scholar

Pal P, Chakraborty S, Roy M (2012) Sep. Sci. Technol. 47: 1091–1101.Search in Google Scholar

Pal P (2015) Groundwater Arsenic Remediation: Treatment Technology and Scale Up. Elsevier, Oxford.Search in Google Scholar

Ryu J, Monllor-Satoca D, Kim D, Yeo J, Choi W (2013) Environ. Sci. Technol. 47: 9381–9387.10.1021/es402011gSearch in Google Scholar

Sarkar S, Blaney LM, Gupta A, Ghosh D, SenGupta AK (2007) React. Funct. Polym. 67: 1599–1611.Search in Google Scholar

Sen M, Pal P (2009) Desalin. Water Treat. 11: 275–282.10.5004/dwt.2009.857Search in Google Scholar

Sen M, Manna A, Pal P (2010) J. Membr. Sci. 354: 108–113.Search in Google Scholar

Sharma VK, Dutta PK, Ray AK (2007) Sci. Health A Tox. Hazard. Subst. Environ. Eng. 42: 997–1004.Search in Google Scholar

Shih MC (2005) Desalination 72: 85–97.10.1016/j.desal.2004.07.031Search in Google Scholar

Singh R, Singh S, Parihar P, Singh VP, Prasad SM (2015) Ecotoxicology and Environmental Safety 112: 247–270.10.1016/j.ecoenv.2014.10.009Search in Google Scholar

Smedley PL, Kinniburgh DG (2002) Appl Geochem 17: 517–568.10.1016/S0883-2927(02)00018-5Search in Google Scholar

Squibb KS, Fowler BA (1983) Biological and environmental effects of arsenic: The toxicity of arsenic and its compounds. Elsevier, Amsterdam.10.1016/B978-0-444-80513-3.50011-6Search in Google Scholar

Ungureanu G, Santos S, Boaventura R, Botelho C (2015) Journal of Environmental Management 151: 326–342.10.1016/j.jenvman.2014.12.05125585146Search in Google Scholar

van Genuchten CM, Addy SEA, Pena J, Gadgil AJ (2012) Environ. Sci. Technol. 46: 986–994.10.1021/es201913a22132945Search in Google Scholar

van Halem D, Bakker SA, Amy GL, van Dijk JC (2009) Drink. Water Eng. Sci. 2: 29–34.Search in Google Scholar

Viraraghavan T, Subramanian KS, Aruldoss JA (1999) Water Sci. Tech. 40: 69–76.Search in Google Scholar

Wang S, Mulligan CN (2006) Sci. Total Environ. 366: 701–721.10.1016/j.scitotenv.2005.09.00516203025Search in Google Scholar

Welch AH, Lico MS, Hughes JL (1988) Groundwater 26: 333–347.10.1111/j.1745-6584.1988.tb00397.xSearch in Google Scholar

Yamamura S, Ike M, Fujita M (2003) J. Biosci. Bioeng. 96: 454–460.Search in Google Scholar

Zhu J, Pigna M, Cozzolino V, Caporale AG, Violante A. (2013) Environ. Chem. Lett. 11: 289–294.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo