1. bookVolume 7 (2014): Issue 1 (April 2014)
Journal Details
First Published
10 Dec 2012
Publication timeframe
2 times per year
access type Open Access

The DFT calculations of pKa values of the cationic acids of aniline and pyridine derivatives in common solvents

Published Online: 27 May 2014
Volume & Issue: Volume 7 (2014) - Issue 1 (April 2014)
Page range: 25 - 30
Journal Details
First Published
10 Dec 2012
Publication timeframe
2 times per year

The theoretical pKa values of the derivatives of anilinium and pyridinium ions in 7 solvents are presented. For this purpose, the usage of isodesmic reaction scheme using the DFT/B3LYP approach with IEFPCM solvation was evaluated. We have shown that the suitable selection of reference species has the primary influence on the resulting data. For the studied anilinium ion derivatives the nonsubstituted anilinium ion seems to be a satisfactory reference system. The calculated values are in good accordance with the available experimental data with the RMS error of 1.00 and 0.99 pKa units in water and THF, respectively. The highest error in predicted pKa value is less than 2.0 pKa units in all cases. The chemical accuracy of the applied treatment is limited in the case of nitroaniline ions and the maximal therotetical uncertainty for derivatives of the pyridinium ion is within 2.1 pKa units. Our theoretical results enable us to predict the values of pKa for the solvents, where the experimental data are not completely available. Also the influence of the chemical structure on the accuracy of the applied method was discussed.


Babić S, Horvat AJM, Pavlović DM, Kaštelan-Macan M (2007) Trends Anal. Chem. 26, 1043-1061.Search in Google Scholar

Becke AD (1988) Phys. Rev. A 38, 3098-3100.Search in Google Scholar

Binkley JS, Pople JA, Hehre WJ (1980) J. Am. Chem. Soc. 102, 939-947.Search in Google Scholar

Casasnovas R, Fernandez D, Ortega-Castro J, Frau J, Donoso J, Munoz F (2011) Theor. Chem. Acc. 130, 1-13.Search in Google Scholar

Casasnovas R, Frau J, Ortega-Castro J, Salva A, Donoso J, Munoz F (2009) J. Mol. Struc. - THEOCHEM 912, 5-12.10.1016/j.theochem.2008.11.020Search in Google Scholar

Charif IE, Mekelleche SM, Villemin D, Mora-Diez N (2007) J. Mol. Struc. - THEOCHEM 818, 1-6.10.1016/j.theochem.2007.04.037Search in Google Scholar

Chipman, DM (2000) J. Chem. Phys 112, 5558-5565.Search in Google Scholar

Chipman, DM (2002) J. Phys. Chem. A 106, 7413-7422.Search in Google Scholar

Cox G (2013) Solvent Effects on Acid-Base Strength. Oxford University Press : Oxford.Search in Google Scholar

Curtiss LA, McGrath MP, Blandeau J-P, Davis NE, Binning Jr RC, Radom L (1995) J. Chem. Phys. 103, 6104-6113.Search in Google Scholar

Derbel N, Clarot I, Mourer M, Regnouf-de-Vains J, Ruiz- Lopez MF (2012) J. Phys. Chem. A 116, 9404-9411.Search in Google Scholar

Dissanayake DP, Senthilnithy R (2009) J. Mol. Struc. - THEOCHEM 910, 93-98.Search in Google Scholar

Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Jr., Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cosi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegava J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain M-C, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nakaryakkara A, Chalacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzales C, Pople JA (2003) GAUSSIAN 03. Revision A.1. Pittsburg. Pa.Search in Google Scholar

Garrido G, Roses M, Rafols C, Bosch E (2008) J. Solution Chem. 37, 689-700.10.1007/s10953-008-9262-6Search in Google Scholar

Govender KK, Cukrowski I (2009) J. Phys. Chem. A 113, 3639-3647.Search in Google Scholar

Govender KK, Cukrowski I (2010) J. Phys. Chem. A 114, 1868-1878.Search in Google Scholar

Grana AM, Hermida-Ramon JM, Mosquera RA (2005) Chem. Phys. Lett. 412, 106-109.Search in Google Scholar

Haiying Y, Kuhne R, Ebert RU, Schuurmann G (2010) J.Search in Google Scholar

Chem. Inf. Model. 50, 1949-1960.Search in Google Scholar

Ho J, Klamt A, Coote ML (2010) J. Phys. Chem. A 114, 13442-13444.Search in Google Scholar

Klein E, Lukeš V (2006a) Chemical Physics 330, 515-525.10.1016/j.chemphys.2006.09.026Search in Google Scholar

Klein E, Lukeš V (2006b) J. Mol. Struc. - THEOCHEM 767, 43-50.10.1016/j.theochem.2006.04.017Search in Google Scholar

Klein E, Lukeš V (2006c) J. Phys. Chem. A 110, 12312-12320.10.1021/jp063468i17078630Search in Google Scholar

Klein E, Lukeš V, Cibulkova Z, Polovkova J (2006) Journal of Molecular Structure: THEOCHEM 758, 149-159.10.1016/j.theochem.2005.10.015Search in Google Scholar

Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J.Search in Google Scholar

Chem. Phys. 72, 650-654.Search in Google Scholar

Lee C, Yang W, Parr RG (1988) Phys. Rev. B 37, 785-789.Search in Google Scholar

Li GS, Ruiz-Lopez MF, Maigret B (1997) J. Phys. Chem. A 101, 7885-7892.Search in Google Scholar

Liptak MD, Gross KC, Seybold PG, Feldgus S, Shields GC (2002) J. Am. Chem. Soc. 124, 6421-6427.Search in Google Scholar

Liptak MD, Shields GC (2001) J. Am. Chem. Soc. 123, 7314-7319.Search in Google Scholar

Magill AM, Cavell KJ, Yates BF (2004) J. Am. Chem. Soc. 126, 8717-8724.Search in Google Scholar

McLean AD, Chandler GS (1980) J. Chem. Phys. 72, 5639-5648.Search in Google Scholar

Murłowska K, Sadlej-Sosnowska NJ (2005) Phys. Chem. A 109, 5590-5595.Search in Google Scholar

Najafi Me, Najafi Mo, Najafi H (2012) Can. J. Chem. 90, 915-926.Search in Google Scholar

Namazian M, Halvani S (2006) J. Chem. Thermodyn. 38, 1495-1502.10.1016/j.jct.2006.05.002Search in Google Scholar

Namazian M, Halvani S, Noorbala MR (2004) J. Mol. Struc. - THEOCHEM 711, 13-18.10.1016/j.theochem.2004.07.032Search in Google Scholar

Namazian M, Kalantary-Fotooh F, Noorbala MR, Searles DJ, Coote ML (2006) J. Mol. Struc. - THEOCHEM 758, 275-278.10.1016/j.theochem.2005.10.024Search in Google Scholar

Pliego JR (2003) Chem. Phys. Lett. 367, 145-149.Search in Google Scholar

Remko M, von der Lieth CW (2004) Bioorg. Med. Chem. 12, 5395-5403.Search in Google Scholar

Rimarčik J, Lukeš V, Klein E, Rottmannova L (2011) Comp. Theor. Chem. 967, 273-283.Search in Google Scholar

Sastre S, Casasnovas R, Munoz F, Frau J (2013) Theor. Chem. Acc. 132, 1-8.Search in Google Scholar

Schuurmann G (1996) Quant. Struct. - Act. Relat. 15, 121-132.Search in Google Scholar

Schuurmann G, Cossi M, Barone V, Tomasi J (1998) J. Phys. Chem. A 102, 6706-6712.Search in Google Scholar

Shields GC, Seybold PG (2013) Computational Approaches for the Prediction of pKa Values. CRC Press: Boca Raton.10.1201/b16128Search in Google Scholar

Topol IA, Burt SK, Rashin AA, Erickson JW (2000) J. Phys. Chem. A 104, 866-872.Search in Google Scholar

Vaganek A, Rimarčik J, Ilčin M, Škorňa P, Lukeš V, Klein E (2013) Comp. Theor. Chem. 1014, 60-67.Search in Google Scholar

Vaganek A, Rimarčik J, Lukeš V, Rottmanova L, Klein E (2011) Acta Chimica Slovaca 4, 55-71.Search in Google Scholar

Wang L, Heard DE, Pilling MJ, Seakins P (2008) J. Phys. Chem. A 112, 1832-1840. Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo