Open Access

A novel 4-(1,3,4-thiadiazole-2-ylthio)pyrimidine derivative inhibits cell proliferation by suppressing the MEK/ERK signaling pathway in colorectal cancer


Cite

H. Sung, J. Ferlay, R. L.Siegel, M. Laversanne, I. Soerjomataram, A. Jemal and F. Bray, Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA Cancer J. Clin. 71(3) (2021) 209–249; https://doi.org/10.3322/caac.21660Search in Google Scholar

J. Ferlay, M. Colombet, I. Soerjomataram, D. M. Parkin, M. Piñeros, A. Znaor and F. Bray, Cancer statistics for the year 2020: An overview, Int. J. Cancer 149(4) (2021) 778–789; https://doi.org/10.1002/ijc.33588Search in Google Scholar

Latest global cancer data: Cancer burden rises to 19.3 million new cases and 10.0 million cancer deaths in 2020. Retrieved Mar 13, 2023, from https://www.iarc.who.int/news-events/latest-global-cancer-data-cancer-burden-rises-to-19-3-million-new-cases-and-10-0-million-cancer-deaths-in-2020/Search in Google Scholar

C. Xia, X. Dong, H. Li, M. Cao, D. Sun, S. He, F. Yang, X. Yan, S. Zhang, N. Li and W. Chen, Cancer statistics in China and United States, 2022: profiles, trends, and determinants, Chin. Med. J. (Engl). 135(5) (2022) 584–590; https://doi.org/10.1097/cm9.0000000000002108Search in Google Scholar

Y. Jiang, H. Yuan, Z. Li, X. Ji, Q. Shen, J. Tuo, J. Bi, H. Li and Y. Xiang, Global pattern and trends of colorectal cancer survival: a systematic review of population-based registration data, Cancer Biol. Med. 19(2) (2021) 175–186; https://doi.org/10.20892/j.issn.2095-3941.2020.0634Search in Google Scholar

N. Li, B. Lu, C. Luo, J. Cai, M. Lu, Y. Zhang, H. Chen and M. Dai, Incidence, mortality, survival, risk factor and screening of colorectal cancer: A comparison among China, Europe, and Northern America, Cancer Lett. 522 (2021) 255–268; https://doi.org/10.1016/j.canlet.2021.09.034Search in Google Scholar

E. Dekker, P. J. Tanis, J. L. A. Vleugels, P. M. Kasi and M. B. Wallace, Colorectal cancer, Lancet 394(10207) (2019) 1467–1480; https://doi.org/10.1016/s0140-6736(19)32319-0Search in Google Scholar

B. Dariya, S. Aliya, N. Merchant, A. Alam and G. P. Nagaraju, Colorectal cancer biology, diagnosis, and therapeutic approaches, Crit. Rev. Oncog. 25(2) (2020) 71–94; https://doi.org/10.1615/CritRevOncog.2020035067Search in Google Scholar

I. Mármol, C. Sánchez-de-Diego, A. Pradilla Dieste, E. Cerrada and M. J. Rodriguez Yoldi, Colorectal carcinoma: A general overview and future perspectives in colorectal cancer, Int. J. Mol. Sci. 18(1) (2017) Article ID 197 (40 pages); https://doi.org/10.3390/ijms18010197Search in Google Scholar

L. H. Biller and D. Schrag, Diagnosis and treatment of metastatic colorectal cancer: A review, JAMA. 325(7) (2021) 669–685; https://doi.org/10.1001/jama.2021.0106Search in Google Scholar

S. Piawah and A. P. Venook, Targeted therapy for colorectal cancer metastases: A review of current methods of molecularly targeted therapy and the use of tumor biomarkers in the treatment of metastatic colorectal cancer, Cancer. 125(23) (2019) 4139–4147; https://doi.org/10.1002/cncr.32163Search in Google Scholar

J. Zhou, Q. Ji and Q. Li, Resistance to anti-EGFR therapies in metastatic colorectal cancer: underlying mechanisms and reversal strategies, J. Exp. Clin. Cancer Res. 40 (2021) Article ID 328 (17 pages); https://doi.org/10.1186/s13046-021-02130-2Search in Google Scholar

U. Degirmenci, M. Wang and J. Hu, Targeting aberrant RAS/RAF/MEK/ERK signaling for cancer therapy, Cells. 9(1) (2020) Article ID 198 (33 pages); https://doi.org/10.3390/cells9010198Search in Google Scholar

H. Moon and S. W. Ro, MAPK/ERK signaling pathway in hepatocellular carcinoma, Cancers (Basel) 13(12) (2021) Article ID 3026 (19 pages); https://doi.org/10.3390/cancers13123026Search in Google Scholar

R. Barbosa, L. A. Acevedo and R. Marmorstein, The MEK/ERK network as a therapeutic target in human cancer, Mol. Cancer Res. 19(3) (2021) 361–374; https://doi.org/10.1158/1541-7786.mcr-20-0687Search in Google Scholar

Q. Wang, T. Wang, L. Zhu, N. He, C. Duan, W. Deng, H. Zhang and X. Zhang, Sophocarpine inhibits tumorgenesis of colorectal cancer via downregulation of MEK/ERK/VEGF pathway, Biol. Pharm. Bull. 42(11) (2019) 1830–1838; https://doi.org/10.1248/bpb.b19-00353Search in Google Scholar

H. Pan, Y. Wang, K. Na, Y. Wang, L. Wang, Z. Li, C. Guo, D. Guo and X. Wang, Autophagic flux disruption contributes to Ganoderma lucidum polysaccharide-induced apoptosis in human colorectal cancer cells via MAPK/ERK activation, Cell Death Dis. 10 (2019) Article ID 456 (18 pages); https://doi.org/10.1038/s41419-019-1653-7Search in Google Scholar

J. Ros, I. Baraibar, E. Sardo, N. Mulet, F. Salvà, G. Argilés, G. Martini, D. Ciardiello, J. L. Cuadra, J. Tabernero and E. Élez, BRAF, MEK and EGFR inhibition as treatment strategies in BRAF V600E metastatic colorectal cancer, Ther. Adv. Med. Oncol. 13 (2021) Article ID 1758835921992974; https://doi.org/10.1177/1758835921992974Search in Google Scholar

P. Zhang, H. Kawakami, W. Liu, X. Zeng, K. Strebhardt, K. Tao, S. Huang and F. A. Sinicrope, Targeting CDK1 and MEK/ERK overcomes apoptotic resistance in BRAF-mutant human colorectal cancer, Mol. Cancer Res. 16(3) (2018) 378–389; https://doi.org/10.1158/1541-7786.mcr-17-0404Search in Google Scholar

H. Tayama, H. Karasawa, A. Yamamura, Y. Okamura, F. Katsuoka, H. Suzuki, T. Kajiwara, M. Kobayashi, Y. Hatsuzawa, M. Shiihara, L. Bin, M. Y. Gazi, M. Sato, K. Kumada, S. Ito, M. Shimada, T. Furukawa, T. Kamei, S. Ohnuma and M. Unno, The association between ERK inhibitor sensitivity and molecular characteristics in colorectal cancer, Biochem. Biophys. Res. Commun. 560 (2021) 59–65; https://doi.org/10.1016/j.bbrc.2021.04.130Search in Google Scholar

M. Pashirzad, R. Khorasanian, M. M. Fard, M. H. Arjmand, H. Langari, M. Khazaei, S. Soleiman-pour, M. Rezayi, G. A. Ferns, S. M. Hassanian and A. Avan, The therapeutic potential of MAPK/ERK inhibitors in the treatment of colorectal cancer, Curr. Cancer Drug Targets 21(11) (2021) 932–943; https://doi.org/10.2174/1568009621666211103113339Search in Google Scholar

S. Gong, D. Xu, J. Zhu, F. Zou and R. Peng, Efficacy of the MEK inhibitor cobimetinib and its potential application to colorectal cancer cells. Cellular physiology and biochemistry, Cell Physiol. Biochem. 47 (2018) 680–693; https://doi.org/10.1159/000490022Search in Google Scholar

N. Abbas, G. S. P. Matada, P. S. Dhiwar, S. Patel and G. Devasahayam, Fused and substituted pyrimidine derivatives as profound anti-cancer agents, Anticancer Agents Med. Chem. 21(7) (2021) 861–893; https://doi.org/10.2174/1871520620666200721104431Search in Google Scholar

A. Ayati, S. Moghimi, M. Toolabi and A. Foroumadi, Pyrimidine-based EGFR TK inhibitors in targeted cancer therapy, Eur. J. Med. Chem. 221 (2021) Article ID 113523 (19 pages); https://doi.org/10.1016/j.ejmech.2021.113523Search in Google Scholar

S. Wang, X. H. Yuan, S. Q. Wang, W. Zhao, X. B. Chen and B. Yu, FDA-approved pyrimidine-fused bicyclic heterocycles for cancer therapy: Synthesis and clinical application, Eur. J. Med. Chem. 214 (2021) Article ID 113218 (21 pages); https://doi.org/10.1016/j.ejmech.2021.113218Search in Google Scholar

S. A. El-Metwally, M. M. Abou-El-Regal, I. H. Eissa, A. B. M. Mehany, H. A. Mahdy, H. Elkady, A. Elwan and E. B. Elkaeed, Discovery of thieno(2,3-d)pyrimidine-based derivatives as potent VEGFR-2 kinase inhibitors and anti-cancer agents, Bioorg. Chem. 112 (2021) Article ID 104947 (15 pages); https://doi.org/10.1016/j.bioorg.2021.104947Search in Google Scholar

W. Li, J. Chu, T. Fan, W. Zhang, M. Yao, Z. Ning, M. Wang, J. Sun, X. Zhao and A. Wen, Design and synthesis of novel 1-phenyl-3-(5-(pyrimidin-4-ylthio)-1,3,4-thiadiazol-2-yl)urea derivatives with potent anti-CML activity throughout PI3K/AKT signaling pathway, Bioorg. Med. Chem. Lett. 29(14) (2019) 1831–1835; https://doi.org/10.1016/j.bmcl.2019.05.005Search in Google Scholar

S. Elmore, Apoptosis: a review of programmed cell death, Toxicol. Pathol. 35(4) (2007) 495–516; https://doi.org/10.1080/01926230701320337Search in Google Scholar

T. L. Lochmann, Y. M. Bouck and A. C. Faber, BCL-2 inhibition is a promising therapeutic strategy for small cell lung cancer, Oncoscience 5(7-8) (2018) 218–219; https://doi.org/10.18632/oncoscience.455Search in Google Scholar

J. Bennouna, M. Deslandres, H. Senellart, C. de Labareyre, R. Ruiz-Soto, C. Wixon, J. Botbyl, A. B. Suttle and J. P. Delord, A phase I open-label study of the safety, tolerability, and pharmacokinetics of pazopanib in combination with irinotecan and cetuximab for relapsed or refractory metastatic colorectal cancer, Invest. New Drugs. 33 (2015) 138–147; https://doi.org/10.1007/s10637-014-0142-1Search in Google Scholar

M. Javle, S. Roychowdhury, R. K. Kelley, S. Sadeghi, T. Macarulla, K. H. Weiss, D. T. Waldschmidt, L. Goyal, I. Borbath, A. El-Khoueiry, M. J. Borad, W. P. Yong, P. A. Philip, M. Bitzer, S. Tanasanvimon, A. Li, A. Pande, H. S. Soifer, S. P. Shepherd, S. Moran, A. X. Zhu, T. S. Bekaii-Saab and G. K. Abou-Alfa, Infigratinib (BGJ398) in previously treated patients with advanced or metastatic cholangiocarcinoma with FGFR2 fusions or rearrangements: mature results from a multicentre, open-label, single-arm, phase 2 study, Lancet Gastroenterol. Hepatol. 6(10) (2021) 803–815; https://doi.org/10.1016/s2468-1253(21)00196-5Search in Google Scholar

J. Xu, L. Shen, Z. Zhou, J. Li, C. Bai, Y. Chi, Z. Li, N. Xu, E. Li, T. Liu, Y. Bai, Y. Yuan, X. Li, X. Wang, J. Chen, J. Ying, X. Yu, S. Qin, X. Yuan, T. Zhang, Y. Deng, D. Xiu, Y. Cheng, M. Tao, R. Jia, W. Wang, J. Li, S. Fan, M. Peng and W. Su, Surufatinib in advanced extrapancreatic neuroendocrine tumours (SANET-ep): a randomised, double-blind, placebo-controlled, phase 3 study, Lancet Oncol. 21(11) (2021) 1500–1512; https://doi.org/10.1016/s1470-2045(20)30496-4Search in Google Scholar

T. Otto and P. Sicinski, Cell cycle proteins as promising targets in cancer therapy, Nat. Rev. Cancer. 17 (2017) 93–115; https://doi.org/10.1038/nrc.2016.138Search in Google Scholar

B. A. Carneiro and W. S. El-Deiry, Targeting apoptosis in cancer therapy, Nat. Rev. Clin. Oncol. 17 (2020) 395–417; https://doi.org/10.1038/s41571-020-0341-ySearch in Google Scholar

S. Kaczanowski, Apoptosis: its origin, history, maintenance and the medical implications for cancer and aging, Phys. Biol. 13(3) (2016) Article ID 031001 (15 pages); https://doi.org/10.1088/1478-3975/13/3/031001Search in Google Scholar

Y. Luo, J. Ma and W. Lu, The significance of mitochondrial dysfunction in cancer, Int. J. Mol. Sci. 21(16) (2020) Article ID 5598 (24 pages); https://doi.org/10.3390/ijms21165598Search in Google Scholar

Q. G. Ren, T. Huang, S. L. Yang and J. L. Hu, Colon cancer metastasis to the mandibular gingiva with partial occult squamous differentiation: A case report and literature review, Mol. Clin. Oncol. 6(2) (2017) 189–192; https://doi.org/10.3892/mco.2016.1102Search in Google Scholar

R. Ullah, Q. Yin, A. H. Snell and L. Wan, RAF-MEK-ERK pathway in cancer evolution and treatment, Semin. Cancer Biol. 85 (2022) 123–154; https://doi.org/10.1016/j.semcancer.2021.05.010Search in Google Scholar

P. K. Wu, A. Becker and J. I. Park, Growth inhibitory signaling of the Raf/MEK/ERK pathway, Int. J. Mol. Sci. 21(15) (2020) Article ID 5436 (12 pages); https://doi.org/10.3390/ijms21155436Search in Google Scholar

S. M. Akula, S. L. Abrams, L. S. Steelman, M. R. Emma, G. Augello, A. Cusimano, A. Azzolina, G. Montalto, M. Cervello and J. A. McCubrey, RAS/RAF/MEK/ERK, PI3K/PTEN/AKT/mTORC1 and TP53 pathways and regulatory miRs as therapeutic targets in hepatocellular carcinoma, Expert Opin. Ther. Targets 23(11) (2019) 915–929; https://doi.org/10.1080/14728222.2019.1685501Search in Google Scholar

eISSN:
1846-9558
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Pharmacy, other