1. bookVolume 72 (2022): Issue 2 (June 2022)
Journal Details
License
Format
Journal
eISSN
1846-9558
First Published
28 Feb 2007
Publication timeframe
4 times per year
Languages
English
access type Open Access

Current strategies in diagnostics and therapeutics against novel coronavirus disease (COVID-19)

Published Online: 30 Dec 2021
Page range: 171 - 197
Accepted: 31 Mar 2021
Journal Details
License
Format
Journal
eISSN
1846-9558
First Published
28 Feb 2007
Publication timeframe
4 times per year
Languages
English
Abstract

The epidemic of COVID-19 spread quickly through China and engulfed all of the countries across the globe. Several advances have been made in understanding the novel coronavirus’s pathophysiology and in the development of newer diagnostics with pinpoint accuracy. Several newer therapeutic methods have either been accepted or are awaiting acceptance. In many countries, vaccination programs have been rolled out. Despite all these efforts, coronavirus still exists, though with lesser propensity. Multiple new forms of the novel coronavirus unexpectedly appeared in various areas of the world, undermining previously existing diagnosis and care protocols. This article highlights our understanding of the novel coronavirus’s symptoms in brief, pathogenesis, diagnostics, and therapeutic strategies to contain COVID-19. The clinical findings, including serological, radiological, and other advanced diagnostic strategies, contributed much to control the disease. To date, supportive interventions have been used in tandem with potent antiviral therapies such as remdesivir, lopinavir/ritonavir, or corticosteroids with a level of trust in the care of COVID-19 patients. However, in several areas of the world, vaccination initiatives took place; the vaccines’ safety and efficacy to control the outbreak is yet to be identified. This review concludes that improvement in therapies and diagnostics for COVID-19 must continually be explored as new variants constantly emerge.

Keywords

H. Zhu, L. Wei and P. Niu, The novel coronavirus outbreak in Wuhan, China, Glob. Health Res. Pol. 5 (2020) Article ID 6 (3 pages); https://doi.org/10.1186/s41256-020-00135-610.1186/s41256-020-00135-6Search in Google Scholar

F. Di Gennaro, D. Pizzol, C. Marotta, M. Antunes, V. Racalbuto, N. Veronese and L. Smith, Coronavirus diseases (COVID-19) current status and future perspectives: a narrative review, Int. J. Environ. Res. Public Health 17 (2020) Article ID 2690 (11 pages); https://doi.org/10.3390/ijerph1708269010.3390/ijerph17082690Search in Google Scholar

WHO, Coronavirus (COVID-19) Dashboard; https://covid19.who.int/?adgroupsurvey={adgroupsurvey}&gclid=CjwKCAjwxuuCBhATEiwAIIIz0fTN6oKYMvVIaWv1taX_3SpdYTW6ohBt1aIMc3M9MVMC7cjEx9RKOBoClzYQAvD_BwE; last access date March 24, 2021Search in Google Scholar

S. Payne, Viruses – From Understanding to Investigation, Family Coronaviridae, Academic Press, London, 2017, Chapter 17, pp. 149–158; https://doi.org/10.1016/B978-0-12-803109-4.00017-910.1016/B978-0-12-803109-4.00017-9Search in Google Scholar

H. Li, Y. M. Wang, J. Y. Xu and B. Cao, Potential antiviral therapeutics for 2019 novel coronavirus, ZhonghuaJie he hehu xi zazhi (Chinese J. Tuberculosis and Respiratory Diseases) 43 (2020) 170–172; https://doi.org/10.3760/cma.j.issn.1001-0939.2020.03.004Search in Google Scholar

Thermo Fisher Scientific, Solutions For Surveillance of the S Gene Mutation in the B.1.1.7 (501Y.V1) SARS-Cov-2 Strain Lineage; https://www.thermofisher.com/blog/behindthebench/solutions-for-surveillance-of-the-s-gene-mutation-in-the-b117-501yv1-sars-cov-2-strain-lineage/?cid=gsd_cbu_sbu_r03_co_cp1422_pjt6968_gsd00000_0se_gaw_ta_lgn_em-b117-corona&gclid=Cj0KCQiAj9iBBhCJARIsAE9qRtD-lDLjg_CNjrMy2w1c0szCMR1d0FEOaF_Vn4VZlsOJIq0w2Mf95UaAqPJEALw_wcB; last access date February 17, 2021Search in Google Scholar

L. L. Ren, Y. M. Wang, Z. Q. Wu, Z. C. Xiang, L. Guo, T. Xu, Y. Z. Jiang, Y. Xiong, Y. J. Li, X.W. Li and H. Li, Identification of a novel coronavirus causing severe pneumonia in human: a descriptive study, Chin. Med. J. 133 (2020) 1015–1024; https://doi.org/10.1097/CM9.000000000000072210.1097/CM9.0000000000000722Search in Google Scholar

C. Huang, Y. Wang, X. Li, L. Ren, J. Zhao, Y. Hu, L. Zhang, G. Fan, J. Xu, X. Gu and Z. Cheng, Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China, Lancet 395 (2020) 497–506; https://doi.org/10.1016/S0140-6736(20)30183-510.1016/S0140-6736(20)30183-5Search in Google Scholar

Y. H. Jin, L. Cai, Z. S. Cheng, H. Cheng, T. Deng, Y. P. Fan, C. Fang, D. Huang, L. Q. Huang, Q. Huang, Y. Han, B. Hu, F. Hu, B. H. Li, Y. R. Li, K. Liang, L.K. Lin, L. S. Luo, J. Ma, L. L. Ma, Z. Y. Peng, Y. B. Pan, Z. Y. Pan, X. Q. Ren, H. M. Sun, Y. Wang, Y. Y. Wang, H. Weng, C. J. Wei, D. F. Wu, J. Xia, Y. Xiong, H. B. Xu, X. M. Yao, Y. F. Yuan, T. S. Ye, X. C. Zhang, Y. W. Zhang, Y. G. Zhang, H. M. Zhang, Y. Zhao, M. J. Zhao, H. Zi, X. T. Zeng, Y. Y. Wang and X. H. Wang, A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia (standard version), Mil. Med. Res. 7 (2020) Article ID 4 (23 pages); https://doi.org/10.1186/s40779-020-0233-610.1186/s40779-020-0233-6Search in Google Scholar

C. Chakraborty, A. R. Sharma, G. Sharma, M. Bhattacharya and S. S. Lee, SARS-CoV-2 causing pneumonia-associated respiratory disorder (COVID-19): diagnostic and proposed therapeutic options, Eur. Rev. Med. Pharmacol. 24 (2020) 4016–4026; https://doi.org/10.26355/eurrev_202004_20871Search in Google Scholar

W. Wang, J. Tang and F. Wei, Updated understanding of the outbreak of 2019 novel coronavirus (2019-nCoV) in Wuhan, China, J. Med. Virol. 92 (2020) 441–447; https://doi.org/10.1002/jmv.2568910.1002/jmv.25689Search in Google Scholar

T. Klopfenstein, H. Zahra, Q. Lepiller, P. Y. Royer, L. Toko, V. Gendrin and S. Zayet, New loss of smell and taste: Uncommon symptoms in COVID-19 patients in Nord Franche-Comte cluster, France, Int. J. Infect. Dis. 100 (2020) 117–122; https://doi.org/10.1016/j.ijid.2020.08.01210.1016/j.ijid.2020.08.012Search in Google Scholar

M. Suzuki, K. Saito, W. P. Min, C. Vladau, K. Toida, H. Itoh and S. Murakami, Identification of viruses in patients with post-viral olfactory dysfunction, Laryngoscope 117 (2007) 272–277; https://doi.org/10.1097/01.mlg.0000249922.37381.1e10.1097/01.mlg.0000249922.37381.1eSearch in Google Scholar

D. Harmer, M. Gilbert, R. Borman and K. L. Clark, Quantitative mRNA expression profiling of ACE 2, a novel homologue of angiotensin converting enzyme, FEBS Lett. 532 (2002) 107–110; https://doi.org/10.1016/s0014-5793(02)03640-210.1016/S0014-5793(02)03640-2Search in Google Scholar

M. Letko, A. Marzi and V. Munster, Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses, Nat. Microbiol. 5 (2020) 562–569; https://doi.org/10.1038/s41564-020-0688-y10.1038/s41564-020-0688-ySearch in Google Scholar

L. Cantuti-Castelvetri, R. Ojha, L. D. Pedro, M. Djannatian, J. Franz, S. Kuivanen, F. van der Meer, K. Kallio, T. Kaya, M. Anastasina and T. Smura, Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity, Science 370 (2020) 856–860; https://doi.org/10.1126/science.abd298510.1126/science.abd2985Search in Google Scholar

Y. Wu, C. Guo, L. Tang, Z. Hong, J. Zhou, X. Dong, H. Yin, Q. Xiao, Y. Tang, X. Qu and L. Kuang, Prolonged presence of SARS-CoV-2 viral RNA in faecal samples, Lancet Gastroenterol. Hepatol. 5 (2020) 434–435; https://doi.org/10.1016/S2468-1253(20)30083-210.1016/S2468-1253(20)30083-2Search in Google Scholar

S. Tavakolpour, T. Rakhshandehroo, E. X. Wei and M. Rashidian, Lymphopenia during the COVID-19 infection: What it shows and what can be learned, Immunol. Lett. 225 (2020) 31–32; https://doi.org/10.1016/j.imlet.2020.06.01310.1016/j.imlet.2020.06.013Search in Google Scholar

N. Chen, M. Zhou, X. Dong, J. Qu, F. Gong, Y. Han, Y. Qiu, J. Wang, Y. Liu, Y. Wei and T. Yu, Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study, Lancet 395 (2020) 507–513; https://doi.org/10.1016/S0140-6736(20)30211-710.1016/S0140-6736(20)30211-7Search in Google Scholar

R. H. Du, L. R. Liang, C. Q. Yang, W. Wang, T. Z. Cao, M. Li, G. Y. Guo, J. Du, C. L. Zheng, Q. Zhu, M. Hu, X. Y. Li, P. Peng and H. Z. Shi, Predictors of mortality for patients with COVID-19 pneumonia caused by SARS-CoV-2: a prospective cohort study, Eur. Respir. J. 55 (2020) Article ID 2000524 (8 pages); https://doi.org/10.1183/13993003.00524-202010.1183/13993003.00524-2020714425732269088Search in Google Scholar

P. Xu, Q. Zhou and J. Xu, Mechanism of thrombocytopenia in COVID-19 patients, Ann. Hematol. 99 (2020) 1205–1207; https://doi.org/10.1007/s00277-020-04019-010.1007/s00277-020-04019-0715689732296910Search in Google Scholar

V. J. Costela-Ruiz, R. Illescas-Montes, J. M. Puerta-Puerta, C. Ruiz and L. Melguizo-Rodríguez, SARS-CoV-2 infection: the role of cytokines in COVID-19 disease, Cytokine Growth Factor Rev. 54 (2020) 62–75; https://doi.org/10.1016/j.cytogfr.2020.06.00110.1016/j.cytogfr.2020.06.001726585332513566Search in Google Scholar

C. Tan, Y. Huang, F. Shi, K. Tan, Q. Ma, Y. Chen, X. Jiang and X. Li, C-reactive protein correlates with computed tomographic findings and predict severe COVID-19 early, J. Med. Virol. 92 (2020) 856–862; https://doi.org/10.1002/jmv.2587110.1002/jmv.25871726234132281668Search in Google Scholar

B. Yu, X. Li, J. Chen, M. Ouyang, H. Zhang, X. Zhao, L. Tang, Q. Luo, M. Xu, L. Yang and G. Huang, Evaluation of variation in D-dimer levels among COVID-19 and bacterial pneumonia: a retrospective analysis, J. Thromb. Thrombolysis 50 (2020) 548–557; https://doi.org/10.1007/s11239-020-02171-y10.1007/s11239-020-02171-y728621232524516Search in Google Scholar

N. Tang, H. Bai, X. Chen, J. Gong, D. Li and Z. Sun, Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy, J. Thromb. Haemost. 18 (2020) 1094–1099; https://doi.org/10.1111/jth.1481710.1111/jth.1481732220112Search in Google Scholar

G. Lippi, A. M. South and B. M. Henry, Electrolyte imbalances in patients with severe coronavirus disease 2019 (COVID-19), Ann. Clin. Biochem. 57 (2020) 262–265; https://doi.org/10.1177/000456322092225510.1177/0004563220922255817332032266828Search in Google Scholar

P. Kumar, M. Sharma, A. Kulkarni and P. N. Rao, Pathogenesis of liver injury in coronavirus disease 2019, J. Clin. Exp. Hepatol. 10 (2020) 641–642; https://doi.org/10.1016/j.jceh.2020.05.00610.1016/j.jceh.2020.05.006723737632837092Search in Google Scholar

G. Lippi and M. Plebani, The critical role of laboratory medicine during coronavirus disease 2019 (COVID-19) and other viral outbreaks, Clin. Chem. Lab. Med. 58 (2020) 1063–1069; https://doi.org/10.1515/cclm-2020-024010.1515/cclm-2020-024032191623Search in Google Scholar

Y. Sandoval, J. L. Januzzi Jr. and A. S. Jaffe, Cardiac troponin for the diagnosis and risk-stratification of myocardial injury in COVID-19: JACC review topic of the week, J. Am. Coll. Cardiol. 76 (2020) 1244–1258; https://doi.org/10.1016/j.jacc.2020.06.06810.1016/j.jacc.2020.06.068783392132652195Search in Google Scholar

J. F. W. Chan, C. C. Y. Yip, K. K. W. To, T. H. C. Tang, S. C. Y. W, K. H. Leung, A. Y. F. Fung, A. C. K. Ng, Z. Zou, H. W. Tsoi, G. K. Y. Choi, A. R. Tam, V. C. C. Cheng, K. H. Chan, O. T. Y. Tsang and K. Y. Yuen, Improved molecular diagnosisof COVID-19 by the novel, highly sensitive and specific COVID-19-RdRp/Hel Real-time reverse transcription-PCR assay validatedin vitro and with clinical specimens, J. Clin. Microbiol. 58 (2020) e00310-20 (10 pages); https://doi.org/10.1128/JCM.00310-2010.1128/JCM.00310-20718025032132196Search in Google Scholar

S. P. Adhikari, S. Meng, Y. J. Wu, Y. P. Mao, R. X. Ye, Q. Z. Wang, C. Sun, S. Sylvia, S. Rozelle, H. Raat and H. Zhou, Epidemiology, causes, clinical manifestation and diagnosis, prevention and control of coronavirus disease (COVID-19) during the early outbreak period: a scoping review, Infect. Dis. Pov. 9 (2020) Article ID 29 (12 pages); https://doi.org/10.1186/s40249-020-00646-x10.1186/s40249-020-00646-x707952132183901Search in Google Scholar

B. A. Forbes, D. Sahm and A. Weissfeld, Study Guide for Bailey and Scott’s Diagnostic Microbiology, 12th ed., Mosby Elsevier, St. Louis (MO) 2007 pp. 118–119.Search in Google Scholar

C. G. Huang, K. M. Lee, M. J. Hsiao, S. L. Yang, P. N. Huang, Y. N. Gong, T. H. Hsieh, P. W. Huang, Y. J. Lin, Y. C. Liu, K. C. Tsao and S. R. Shih, Culture-based virus isolation to evaluate potential infectivity of clinical specimens tested for COVID-19, J. Clin. Microbiol. 58 (2020) e01068-20 (8 pages); https://doi.org/10.1128/JCM.01068-2010.1128/JCM.01068-20738352232518072Search in Google Scholar

S. Bhadra, Y. S. Jiang, M. R. Kumar, R. F. Johnson, L. E. Hensley and A. D. Ellington, Real-time sequence-validated loop-mediated isothermal amplification assays for detection of Middle East respiratory syndrome coronavirus (MERS-CoV), PLoS One 10 (2015) e0123126 (21 pages); https://doi.org/10.1371/journal.pone.012312610.1371/journal.pone.0123126439195125856093Search in Google Scholar

J. F. Chan, G. K. Choi, A. K. Tsang, K. M. Tee, H. Y. Lam, C. C. Yip, K. K. To, V. C. Cheng, M. L. Yeung, S. K. Lau, P. C. Woo, K. H. Chan, B. S. F. Tang and K. Y. Yuen, Development and evaluation of novel real-time reverse transcription-PCR assays with locked nucleic acid probes targeting leader sequences of human-pathogenic Coronaviruses, J. Clin. Microbiol. 53 (2015) 2722–2726; https://doi.org/10.1128/JCM.01224-1510.1128/JCM.01224-15450843426019210Search in Google Scholar

WHO, Coronavirus Disease (COVID-19) Technical Guidance: Laboratory Testing for 2019-NCOV in Humans; https://www.who.int/docs/defaultsource/coronaviruse/whoinhouseassays.pdf?sfvrsn=de3a76aa_2; last access date February 10, 2021Search in Google Scholar

J. J. LeBlanc, J. B. Gubbay, Y. Li, R. Needle, S. R. Arneson, D. Marcino, H. Charest, G. Desnoyers, K. Dust, R. Fattouh, R. Garceau, G. German, T. F Hatchette, R. A. Kozak, M. Krajden, T. Kuschak, A. L. S. Lang, P. Levett, T. Mazzulli, R. McDonald, S. Mubareka, N. Prystajecky, C. Rutherford, M. Smieja, Y. Yu, G. Zahariadis, N. Zelyas and N. Bastien, Real-time PCR-based SARS-CoV-2 detection in Canadian laboratories, J. Clin. Virol. 128 (2020) Article ID 104433 (5 pages); https://doi.org/10.1016/j.jcv.2020.10443310.1016/j.jcv.2020.104433Search in Google Scholar

W. Zhang, R. H. Du, B. Li, X. S. Zheng, X. L. Yang, B. Hu, Y. Y. Wang, G. F. Xiao, B. Yan, Z. L. Shi and P. Zhou, Molecular and serological investigation of 2019-nCoV infected patients: implication of multiple shedding routes, Emerg. Microbes. Infect. 9 (2020) 386–389; https://doi.org/10.1080/22221751.2020.172907110.1080/22221751.2020.1729071Search in Google Scholar

Y. Fang, H. Zhang, J. Xie, M. Lin, L. Ying, P. Pang and W. Ji, Sensitivity of chest CT for COVID-19: comparison to RT-PCR, Radiology 296 (2020) 115–117; https://doi.org/10.1148/radiol.202020043210.1148/radiol.2020200432Search in Google Scholar

P. Huang, T. Liu, L. Huang, H. Liu, M. Lei, W. Xu, X. Hu, J. Chen and B. Liu, Use of chest CT in combination with negative RT-PCR assay for the 2019 novel coronavirus but high clinical suspicion, Radiology 295 (2020) 22–23; https://doi.org/10.1148/radiol.202020033010.1148/radiol.2020200330Search in Google Scholar

I. Smyrlaki, M. Ekman, A. Lentini, N. R. de Sousa, N. Papanicolaou, M. Vondracek, J. Aarum, H. Safari, S. Muradrasoli, A. G. Rothfuchs, J. Albert, B. Högberg and B. Reinius, Massive and rapid COVID-19 testing is feasible by extraction-free SARS-CoV-2 RT-PCR, Nat. Commun. 11 (2020) Article ID 4812 (12 pages); https://doi.org/10.1038/s41467-020-18611-510.1038/s41467-020-18611-5Search in Google Scholar

T. G. Ksiazek, D. Erdman, C. S. Goldsmith, S. R. Zaki, T. Peret, S. Emery, S. Tong, C. Urbani, J. A. Comer, W. Lim, P. E. Rollin and S. F. Dowell, A novel coronavirus associated with severe acute respiratory syndrome, N. Engl. J. Med. 348 (2003) 1953–1966; https://doi.org/10.1056/NEJMoa03078110.1056/NEJMoa030781Search in Google Scholar

J. S. M. Peiris, S. T. Lai, L. L. Poon, Y. Guan, L. Y. Yam, W. Lim, J. Nicholls, W. K. Yee, W. W. Yan, M. T. Cheung, V. C. Cheng, K. H. Chan, D. N. C. Tsang, R. W. H. Yung, T. K. Ng and K. Y. Yuen, Coronavirus as a possible cause of severe acute respiratory syndrome, Lancet 361 (2003) 1319–1325; https://doi.org/10.1016/S0140-6736(03)13077-210.1016/S0140-6736(03)13077-2Search in Google Scholar

P. Asrani, M. S. Eapen, C. Chia, G. Haug, H. C. Weber, M. I. Hassan and S. S. Sohal, Diagnostic approaches in COVID-19: clinical updates, Expert Rev. Resp. Med. 15 (2021) 197–212; https://doi.org/10.1080/17476348.2021.182383310.1080/17476348.2021.182383332924671Search in Google Scholar

M. A. MacMullan, A. Ibrayeva, K. Trettner, L. Deming, S. Das, F. Tran, J. R. Moreno, J. G. Casian, P. Chellamuthu, J. Kraft, K. Kozak, F. E. Turner, V. I. Slepnev and L. M. Le Page, ELISA detection of SARS-CoV-2 antibodies in saliva, Sci. Rep. 10 (2020) Article ID 20818 (8 pages); https://doi.org/10.1038/s41598-020-775554Search in Google Scholar

A. E. Dhamad and M. A. Rhida, COVID-19: molecular and serological detection methods, Peer J. 8 (2020) e10180 (18 pages); https://doi.org/10.7717/peerj.1018010.7717/peerj.10180754759433083156Search in Google Scholar

M. L. Bastos, G. Tavaziva, S. K. Abidi, J. R. Campbell, L. P. Haraoui, J. C. Johnston, Z. Lan, S. Law, E. MacLean, A. Trajman, D. Menzies, A. Benedetti and F. A. Khan, Diagnostic accuracy of serological tests for covid-19: systematic review and meta-analysis, BMJ 370 (2020) Article ID m2516 (13 pages); https://doi.org/10.1136/bmj.m251610.1136/bmj.m2516732791332611558Search in Google Scholar

X. F. Cai, J. Chen, J. L. Hu, Q. X. Long, H. J. Deng, P. Liu, K. Fan, P. Liao, B. Z. Liu, G. C. Wu, Y. K. Chen, Z. J. Li, K. Wang, X. L. Zhang, W. G. Tian, J. L. Xiang, H. X. Du, J. Wang, Y. Hu, N. Tang, Y. Lin, J. H. Ren, L. Y. Huang, J. Wei, C. Y. Gan, Y. M. Chen, Q. Z. Gao, A. M. Chen, C. L. He, D. X. Wang, P. Hu, F. C. Zhou, A. L. Huang and D. Q. Wang, A peptide-based magnetic chemiluminescence enzyme immunoassay for serological diagnosis of coronavirus disease 2019, J. Infect. Dis. 222 (2020) 189–193; https://doi.org/10.1093/infdis/jiaa24310.1093/infdis/jiaa243723910832382737Search in Google Scholar

A. Olalekan, B. Iwalokun, O. M. Akinloye, O. Popoola, T. A. Samuel and O. Akinloye, COVID-19 rapid diagnostic test could contain transmission in low-and middle-income countries, Afr. J. Lab. Med. 9 (2020) Article ID 1255 (8 pages); https://doi.org/10.4102/ajlm.v9i1.125510.4102/ajlm.v9i1.1255756718033102170Search in Google Scholar

Z. Li, Y. Yi, X. Luo, N. Xiong, Y. Liu, S. Li, R. Sun, Y. Wang, B. Hu, W. Chen, Y. Zhang, J. Wang, B. Huang, Y. Lin, J. Yang, W. Cai, X. Wang, J. Cheng, Z. Chen, K. Sun, W. Pan, Z. Zhan, L. Chen, and F. Ye, Development and clinical application of a rapid IgM-IgG combined antibody test for SARS-CoV-2 infection diagnosis, J. Med. Vir. 92 (2020) 1518–1524; https://doi.org/10.1002/jmv.2572710.1002/jmv.25727722830032104917Search in Google Scholar

T. B. Chandra, K. Verma, B. K. Singh, D. Jain and S. S. Netam, Coronavirus disease (COVID-19) detection in chest X-ray images using majority voting based classifier ensemble, Exp. Syst. Appl. 165 (2021) Article ID 113909 (13 pages); https://doi.org/10.1016/j.eswa.2020.11390910.1016/j.eswa.2020.113909744882032868966Search in Google Scholar

W. C. Dai, H. W. Zhang, J. Yu, H. J. Xu, H. Chen, S. P. Luo, H. Zhang, L. H. Liang, X. L. Wu, Y. Lei and F. Lin, CT imaging and differential diagnosis of COVID-19, Can. Assoc. Radiol. J. 71 (2020) 195–200; https://doi.org/10.1177/084653712091303310.1177/0846537120913033714097532129670Search in Google Scholar

S. Tian, W. Hu, L. Niu, H. Liu, H. Xu and S. Y. Xiao, Pulmonary pathology of early phase 2019 novel coronavirus (COVID-19) pneumonia in two patients with lung cancer, J. Thorac. Oncol. 15 (2020) 700–704; https://doi.org/10.1016/j.jtho.2020.02.01010.1016/j.jtho.2020.02.010712886632114094Search in Google Scholar

Y. Ding, H. Wang, H. Shen, Z. Li, J. Geng, H. Han, J. Cai, X. Li, W. Kang, D. Weng, Y. Lu, D. Wu, L. He and K. Yao, The clinical pathology of severe acute respiratory syndrome (SARS): a report from China, J. Pathol. 200 (2003) 282–289; https://doi.org/10.1002/path.144010.1002/path.1440716801712845623Search in Google Scholar

D. L. Ng, F. Al Hosani, M. K. Keating, S. I. Gerber, T. L. Jones, M. G. Metcalfe, S. Tong, Y. Tao, N. N. Alami, L. M. Haynes, M. A. Mutei, L. A. Wareth, T. M. Uyeki, D. L. Swerdlow, M. Barakat and S. R. Zaki, Clinicopathologic, immunohistochemical, and ultrastructural findings of a fatal case of Middle East respiratory syndrome coronavirus infection in the United Arab Emirates, Am. J. Pathol. 186 (2016) 652–658; https://doi.org/10.1016/j.ajpath.2015.10.02410.1016/j.ajpath.2015.10.024709385226857507Search in Google Scholar

B. Hanley, S. B. Lucas, E. Youd, B. Swift and M. Osborn, Autopsy in suspected COVID-19 cases, J. Clin. Pathol. 73 (2020) 239–242; http://dx.doi.org/10.1136/jclinpath-2020-20652210.1136/jclinpath-2020-20652232198191Search in Google Scholar

J. P. Broughton, X. Deng, G. Yu, C. L. Fasching, V. Servellita, J. Singh, X. Miao, J. A. Streithorst, A. Granados, A. S. Gonzalez, K. Zorn, A. Gopez, E. Hsu, W. Gu, S. Miller, C. Y. Pan, H. Guevara, D. A. Wadford, J. S. Chen and C. Y. Chiu, CRISPR-Cas12-based detection of SARS-CoV-2, Nat. Biotechnol. 38 (2020) 870–874; https://doi.org/10.1038/s41587-020-0513-410.1038/s41587-020-0513-432300245Search in Google Scholar

T. Ganzenmueller, R. Kaiser, C. Baier, M. Wehrhane, B. Hilfrich, J. Witthuhn, S. Flucht and A. Heim, Comparison of the performance of the panther fusion respiratory virus panel to R-gene and laboratory developed tests for diagnostic and hygiene screening specimens from the upper and lower respiratory tract, J. Med. Microbiol. 69 (2020) 427–435; https://doi.org/10.1099/jmm.0.00113310.1099/jmm.0.00113332118531Search in Google Scholar

S. M. Novak-Weekley, E. M. Marlowe, M. Poulter, D. Dwyer, D. Speers, W. Rawlinson, C. Baleriola and C. C. Robinson, Evaluation of the Cepheid Xpert flu assay for rapid identification and differentiation of influenza A, influenza A 2009 H1N1, and influenza B viruses, J. Clin. Microbiol. 50 (2012) 1704–1710; https://doi.org/10.1128/JCM.06520-1110.1128/JCM.06520-11334714022378908Search in Google Scholar

A. Karimi, S. R. Tabatabaei, M. Rajabnejad, Z. Pourmoghaddas, H. Rahimi, S. Armin, R. M. Ghanaie, M. R. Kadivar, S. A. Fahimzad, I. Sedighi, B. Mirrahimi, A. S. Dashti, N. Bilan, S. A. Oskouyi, H. Barekati and M. Khalili, An algorithmic approach to diagnosis and treatment of coronavirus disease 2019 (COVID-19) in children: Iranian expert’s consensus statement, Arch. Pediatr. Infect. Dis. 8 (2020) e102400 (6 pages); https://doi.org/10.5812/pedinfect.10240010.5812/pedinfect.102400Search in Google Scholar

C. A. Hogan, M. K. Sahoo, C. Huang, N. Garamani, B. Stevens, J. Zehnder and B. A. Pinsky, Comparison of the Panther Fusion and a laboratory-developed test targeting the envelope gene for detection of SARS-CoV-2, J. Clin. Virol. 127 (2020) Article ID 104383 (3 pages); https://doi.org/10.1016/j.jcv.2020.10438310.1016/j.jcv.2020.104383719532832353760Search in Google Scholar

Y. Zhang, N. Odiwuor, J. Xiong, L. Sun, R. O. Nyaruaba, H. Wei and N. A. Tanner, Rapid molecular detection of SARS-CoV-2 (COVID-19) virus RNA using colorimetric LAMP, medRxiv (preprint), posted Feb 29, 2020; https://doi.org/10.1101/2020.02.26.2002837310.1101/2020.02.26.20028373Search in Google Scholar

M. El-Tholoth, H. H. Bau and J. Song, A single and two-stage, closed-tube, molecular test for the 2019 Novel Coronavirus (COVID-19) at home, clinic, and points of entry, ChemRxiv (preprint) posted Feb 19, 2020; https://doi.org/10.26434/chemrxiv.11860137.v110.26434/chemrxiv.11860137.v1Search in Google Scholar

S. J. Lo, S. C. Yang, D. J. Yao, J. H. Chen, W. C. Tu and C. M. Cheng, Molecular-level dengue fever diagnostic devices made out of paper, Lab. Chip. 13 (2013) 2686–2692; https://doi.org/10.1039/C3LC50135C10.1039/c3lc50135c23563693Search in Google Scholar

T. Yang, Y. C. Wang, C. F. Shen and C. M. Cheng, Point-of-care RNA-based diagnostic device for COVID-19, Diagnostics (Basel) 10 (2020) Article ID 165 (3 pages); https://doi.org/10.3390/diagnostics1003016510.3390/diagnostics10030165715104332197339Search in Google Scholar

F. Song, N. Shi, F. Shan, Z. Zhang, J. Shen, H. Lu, Y. Ling, Y. Jiang and Y. Shi, Emerging 2019 novel coronavirus (2019-nCoV) pneumonia, Radiology 295 (2020) 210–217; https://doi.org/10.1148/radiol.202020027410.1148/radiol.2020200274723336632027573Search in Google Scholar

WHO, Advice on the Use of Point-of-Care Immunodiagnostic Tests for COVID-19: Scientific Brief; https://www.who.int/news-room/commentaries/detail/advice-on-the-use-of-point-of-care-immunodiagnostic-tests-for-covid-19; last access date February 5, 2021Search in Google Scholar

X. Marchand-Senécal, R. Kozak, S. Mubareka, N. Salt, J. B. Gubbay, A. Eshaghi, V. Allen, Y. Li, N. Bastien, M. Gilmour, O. Ozaldin and J. A. Leis, Diagnosis and management of first case of COVID-19 in Canada: lessons applied from SARS, Clin. Infect. Dis. 71 (2020) 2207–2210; https://doi.org/10.1093/cid/ciaa22710.1093/cid/ciaa227710814732147731Search in Google Scholar

A. Piscoya, L. F. Ng-Sueng, A. P. del Riego, R. C. Viacava, V. Pasupuleti, Y. M. Roman, P. Thota, C. M. White and A. V. Hernandez, Efficacy and harms of remdesivir for the treatment of COVID-19: A systematic review and meta-analysis, PloS ONE 15 (2020) e0243705 (19 pages); https://doi.org/10.1371/journal.pone.024370510.1371/journal.pone.0243705Search in Google Scholar

K. Kupferschmidt and J. Cohen, Race to find COVID-19 treatments accelerate, Science 367 (2020) 1412–1413; https://doi.org/10.1126/science.367.6485.141210.1126/science.367.6485.1412Search in Google Scholar

WHO, COVID-19 Clinical Management; file:///C:/Users/LENOVO/Downloads/WHO-2019-nCoV-clinical-2021.1-eng.pdf; last access date March 30, 2021Search in Google Scholar

WHO, Traditional Chinese Medicine Could Make “Health for One” True; https://www.who.int/intellectualproperty/studies/Jia.pdf; last access date March 30, 2021Search in Google Scholar

The COVID-19 RISK and Treatments (CORIST) Collaboration, Use of hydroxychloroquine in hospitalised COVID-19 patients is associated with reduced mortality: Findings from the observational multicentre Italian CORIST study, Eur. J. Intern. Med. 82 (2020) 38–47; https://doi.org/10.1016/j.ejim.2020.08.01910.1016/j.ejim.2020.08.019Search in Google Scholar

M. Gendrot, E. Javelle, E. Le Dault, A. Clerc, H. Savini and B. Pradines, Chloroquine as prophylactic agent against COVID-19, Int. J. Antimicrob. Agents 55 (2020) Article ID 105980 (2 pages); https://doi.org/10.1016/j.ijantimicag.2020.10598010.1016/j.ijantimicag.2020.105980Search in Google Scholar

Chinese Clinical Trial Register (ChiCTR), Study for the efficacy of chloroquine in patients with novel coronavirus pneumonia (COVID-19); http://www.chictr.org.cn/showprojen.aspx?proj=48968; last access date February 15, 2021Search in Google Scholar

P. Gautret, J. C. Lagier, P. Parola, V. T. Hoang, L. Meddeb, M. Mailhe, B. Doudier, J. Courjon, V. Giordanengo, V. E. Vieira, H. T. Dupont, S. Honoré, P. Colson, E. Chabrière, B. La Scola, J. M. Rolain, P. Brouqui and D. Raoult, Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial, Int. J. Antimicrob. Agents 56 (2020) Article ID 105949 (6 pages); https://doi.org/10.1016/j.ijantimicag.2020.10594910.1016/j.ijantimicag.2020.105949Search in Google Scholar

NIH, Efficacy and Safety of Hydroxychloroquine for Treatment of Pneumonia Caused by 2019-nCoV (HC-nCoV); http://clinicaltrials.gov/ct2/show/NCT04261517; last access date January 19, 2021Search in Google Scholar

B. Cao, Y. Wang, D. Wen, W. Liu, J. Wang, G. Fan, L. Ruan, B. Song, Y. Cai, M. Wei, X. Li and J. Xia, A trial of lopinavir-ritonavir in adults hospitalized with severe COVID-19, N. Engl. J. Med. 382 (2020) 1787–1799; https://doi.org/10.1056/NEJMoa200128210.1056/NEJMoa2001282Search in Google Scholar

Chinese Clinical Trial Register (ChiCTR), A Randomized, Open-Label Study to Evaluate the Efficacy and Safety of Lopinavir-Ritonavir in Patients with Mild Novel Coronavirus Pneumonia (COVID-19); http://www.chictr.org.cn/showprojen.aspx?proj=48684; last access date February 21, 2021Search in Google Scholar

NIH, Favipiravir Combined with Tocilizumab in the Treatment of Corona Virus Disease 2019; https://clinicaltrials.gov/ct2/show/NCT04310228; last access date February 21, 2021Search in Google Scholar

K. Shiraki and T. Daikouku, Favipiravir, an anti-influenza drug against life-threatening RNA virus infections, Pharmacol. Ther. 209 (2020) Article ID 107512 (15 pages); https://doi.org/10.1016/j.pharmthera.2020.10751210.1016/j.pharmthera.2020.107512Search in Google Scholar

Chinese Clinical Trial Register (ChiCTR), The Efficacy and Safety of Favipiravir for Novel Coronavirus–Infected Pneumonia: A Multicenter, Randomized, Open, Positive, Parallel-Controlled Clinical Study; http://www.chictr.org.cn/showprojen.aspx?proj=50137; last access date February 21, 2021Search in Google Scholar

Y. Wang, D. Zhang, G. Du, R. Du, J. Zhao, Y. Jin, S. Fu, L. Gao, Z. Cheng, Q. Lu, Y. Hu, G. Luo, K. Wang, Y. Lu, H. Li, S. Wang, S. Ruan, C. Yang, C. Mei, Y. Wang, D. Ding, F. Wu, X. Tang, X. Ye, Y. Ye, B. Liu, J. Yang, W. Yin, A. Wang, G. Fan, F. Zhou, Z. Liu, X. Gu, J. Xu, L. Shang, Y. Zhang, L. Cao, T. Guo, Y. Wan, H. Qin, Y. Jiang, T. Jaki, F. G Hayden, P. W. Horby, B. Cao and C. Wang, Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicenter trial, Lancet 395 (2020) 1569–1578; https://doi.org/10.1016/S0140-6736(20)31022-910.1016/S0140-6736(20)31022-9Search in Google Scholar

C. J. Gordon, E. P. Tchesnokov, J. Y. Feng, D. P. Porter and M. Götte, The antiviral compound remdesivir potently inhibits RNA-dependent RNA polymerase from Middle East respiratory syndrome coronavirus, J. Biol. Chem. 295 (2020) 4773–4779; https://doi.org/10.1074/jbc.AC120.01305610.1074/jbc.AC120.013056715275632094225Search in Google Scholar

NIH, Study to Evaluate the Safety and Antiviral Activity of Remdesivir (GS-5734™) in Participants with Severe Coronavirus Disease (COVID-19); https://clinicaltrials.gov/ct2/show/NCT04292899; last access date February 20, 2021Search in Google Scholar

P. Zarogoulidis, N. Papanas, I. Kioumis, E. Chatzaki, E. Maltezos and K. Zarogoulidis, Macrolides: from in vitro anti-inflammatory and immunomodulatory properties to clinical practice in respiratory disease, Eur. J. Clin. Pharmacol. 68 (2012) 479–503; https://doi.org/10.1007/s00228-011-1161-x10.1007/s00228-011-1161-x22105373Search in Google Scholar

NIH, Azithromycin in Hospitalized COVID-19 Patients (AIC); https://clinicaltrials.gov/ct2/show/NCT04359316; last access date February 21, 2021Search in Google Scholar

X. Xu, M. Han, T. Li, W. Sun, D. Wang, B. Fu, Y. Zhou, X. Zheng, Y. Yang, X. Li, X. Zhang, A. Pan and H. Wei, Effective treatment of severe COVID-19 patients with tocilizumab, Proc. Nat. Acad. Sci. USA 117 (2020) 10970–10975; https://doi.org/10.1073/pnas.200561511710.1073/pnas.2005615117724508932350134Search in Google Scholar

NIH, Tocilizumab for SARS-Cov2 Severe Pneumonitis; http://clinicaltrials.gov/ct2/show/NCT04315480; last access February 24, 2021Search in Google Scholar

CytoDyn Inc., Study to Evaluate the Efficacy and Safety of Leronlimab for Patients With Severe or Critical Coronavirus Disease 2019 (COVID-19); https://clinicaltrials.gov/ct2/show/NCT04347239; last access date February 21, 2021Search in Google Scholar

NIH, Cohort Multiple Randomized Controlled Trials Open-Label of Immune Modulatory Drugs and Other Treatments in COVID-19 Patients – Sarilumab Trial – CORIMUNO-19-SARI (CORIMUNO-SARI); https://clinicaltrials.gov/ct2/show/NCT04324073; last access date February 20, 2021.Search in Google Scholar

NIH, Evaluation of the Efficacy and Safety of Sarilumab in Hospitalized Patients with COVID-19; http://clinicaltrials.gov/ct2/show/NCT04315298; last access date February 20, 2021.Search in Google Scholar

C. Shen, Z. Wang, F. Zhao, Y. Yang, J. Li, J. Yuan, F. Wang, D. Li, M. Yang, L. Xing, J. Wei, H. Xiao, Y. Yang, J. Qu, L. Qing, L. Chen, Z. Xu, L. Peng, Y. Li, H. Zheng, F. Chen, K. Huang, Y. Jiang, D. Liu, Z. Zhang, Y. Liu and L. Liu, Treatment of 5 critically ill patients with COVID-19 with convalescent plasma, JAMA 323 (2020) 1582–1589; https://doi.org/10.1001/jama.2020.478310.1001/jama.2020.4783710150732219428Search in Google Scholar

Royal College of Surgeons in Ireland – Medical University of Bahrain, Convalescent Plasma Trial in COVID -19 Patients; https://clinicaltrials.gov/ct2/show/NCT04356534; last access date February 25, 2021.Search in Google Scholar

NIH, Efficacy and Safety of Corticosteroids in COVID-19 (Methylprednisolone); https://clinicaltrials.gov/ct2/show/NCT04273321; last access date February 25, 2021.Search in Google Scholar

NIH, Dexamethasone for COVID-19 Related ARDS: a Multicenter Randomized Clinical Trial; https://clinicaltrials.gov/ct2/show/NCT04395105; last access date February 21, 2021.Search in Google Scholar

NIH, Clinical Study of Arbidol Hydrochloride Tablets in the Treatment of Pneumonia Caused by Novel Coronavirus; https://clinicaltrials.gov/ct2/show/NCT04260594; last access date February 21, 2021.Search in Google Scholar

M. Nojomi, Z. Yassin, H. Keyvani, M. J. Makiani, M. Roham, A. Laali, N. Dehghan, M. Navaei and M. Ranjbar, Effect of arbidol (umifenovir) on COVID-19: a randomized controlled trial, BMC Infect. Dis. 20 (2020) Article ID 954 (10 pages); https://doi.org/10.1186/s12879-020-05698-w10.1186/s12879-020-05698-w773445333317461Search in Google Scholar

S. Perez-Miller, M. Patek, A. Moutal, C. R. Cabel, C. A. Thorne, S. K. Campos and R. Khanna, In silico identification and validation of inhibitors of the interaction between neuropilin receptor 1 and SARS-CoV-2 Spike protein, bioRxiv (preprint), posted Sept 23, 2020; https://doi.org/10.1101/2020.09.22.30878310.1101/2020.09.22.308783752309832995772Search in Google Scholar

NIH, A Randomized Trial of Anticoagulation Strategies in COVID-19; https://clinicaltrials.gov/ct2/show/NCT04359277; last access date February 21, 2021.Search in Google Scholar

NIH, The Efficacy and Safety of Thalidomide in the Adjuvant Treatment of Moderate New Coronavirus (COVID-19) Pneumonia; http://clinicaltrials.gov/ct2/show/NCT04273529; last access date February 21, 2021.Search in Google Scholar

NIH, Fingolimod in COVID-19; http://clinicaltrials.gov/ct2/show/NCT04280588; last access date February 21, 2021.Search in Google Scholar

S. Mulangu, L. E. Dodd, R. T. Davey, O. T. Mbaya, M. Proschan, D. Mukadi, M. L. Manzo, D. Nzolo, A. T. Oloma, A. Ibanda, R. Ali and S. Coulibaly, A randomized, controlled trial of Ebola virus disease therapeutics, N. Engl. J. Med. 381 (2019) 2293–2303; https://doi.org/10.1056/NEJMoa191099310.1056/NEJMoa191099331774950Search in Google Scholar

NIH, Study to Evaluate the Safety and Antiviral Activity of Remdesivir (GS-5734™) in Participants with Severe Coronavirus Disease (COVID-19); https://clinicaltrials.gov/ct2/show/NCT04292899; last access date February 21, 2021.Search in Google Scholar

J. H. Beigel, K. M. Tomashek, L. E. Dodd, A. K. Mehta, B. S. Zingman, A. C. Kalil, E. Hohmann, H. Y. Chu, A. Luetkemeyer, S. Kline, D. L. de Castilla and R. W. Finberg, Remdesivir for the treatment of Covid-19-final report, New. Engl. J. Med. 383 (2020) 1813–1826; https://doi.org/10.1056/NEJ-Moa2007764Search in Google Scholar

M. Hoffmann, H. K. Weber, S. Schroeder, N. Krüger, T. Herrler, S. Erichsen, T. S. Schiergens, G. Herrler, N. H. Wu, A. Nitsche, M. A. Müller, C. Drosten and S. Pöhlmann, SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor, Cell 181 (2020) 271–280; https://doi.org/10.1016/j.cell.2020.02.05210.1016/j.cell.2020.02.052710262732142651Search in Google Scholar

C. Liu, Q. Zhou, Y. Li, L. V. Garner, S. P. Watkins, L. J. Carter, J. Smoot, A. C. Gregg, A. D. Daniels, S. Jervey and D. Albaiu, Research and development on therapeutic agents and vaccines for COVID-19 and related human coronavirus diseases, ACS Cent. Sci. 6 (2020) 315–331; https://doi.org/10.1021/acscentsci.0c0027210.1021/acscentsci.0c00272709409032226821Search in Google Scholar

K. Kuba, Y. Imai, S. Rao, H. Gao, F. Guo, B. Guan, Y. Huan, P. Yang, Y. Zhang, W. Deng, L. Bao, B. Zhang, G. Liu, Z. Wang, M. Chappell, Y. Liu, D. Zheng, A. Leibbrandt, T. Wada, A. S. Slutsky, D. Liu, C. Qin, C. Jiang, J. M. Penninger, A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus–induced lung injury, Nat. Med. 11 (2005) 875–879; https://doi.org/10.1038/nm126710.1038/nm1267709578316007097Search in Google Scholar

J. Helms, C. Tacquard, F. Severac, I. L. Lorant, M. Ohana, X. Delabranche, H. Merdji, R. C. Jehl, M. Schenck, F. F. Gandet, S. F. Kremer, V. Castelain, F. Schneider, L. Grunebaum, E. A. Cano, L. Sattler, P. M. Mertes and F. Meziani, High risk of thrombosis in patients with severe SARS-CoV-2 infection: a multicenter prospective cohort study, Int. Care Med. 46 (2020) 1089–1098; https://doi.org/10.1007/s00134-020-06062-x10.1007/s00134-020-06062-x719763432367170Search in Google Scholar

A. A. Fowler, J. D. Truwit, R. D. Hite, P. E. Morris, C. DeWilde, A. Priday, B. Fisher, L. R. Thacker, R. Natarajan, D. F. Brophy, R. Sculthorpe, R. Nanchal, A. Syed, J. Sturgill, G. S. Martin, J. Sevransky, M. Kashiouris, S. Hamman, K. F. Egan, A. Hastings, W. Spencer, S. Tench, O. Mehkri, J. Bindas, A. Duggal, J. Graf, S. Zellner, L. Yanny, C. McPolin, T. Hollrith, D. Kramer, C. Ojielo, T. Damm, E. Cassity, A. Wieliczko and M. Halquist, Effect of vitamin C infusion on organ failure and biomarkers of inflammation and vascular injury in patients with sepsis and severe acute respiratory failure: the CITRIS-ALI randomized clinical trial, JAMA 322 (2019) 1261–1270; https://doi.org/10.1001/jama.2019.1182510.1001/jama.2019.11825677726831573637Search in Google Scholar

A. Savarino, L. D. Trani, I. Donatelli, R. Cauda and A. Cassone, New insights into the antiviral effects of chloroquine, Lancet Infect. Dis. 6 (2006) 67–69; https://doi.org/10.1016/S1473-3099(06)70361-910.1016/S1473-3099(06)70361-9Search in Google Scholar

J. Liu, R. Cao, M. Xu, X. Wang, H. Zhang, H. Hu, Y. Li, Z. Hu, W. Zhong and M. Wang, Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro, Cell Discov. 6 (2020) Article ID 16 (4 pages); https://doi.org/10.1038/s41421-020-0156-010.1038/s41421-020-0156-0Search in Google Scholar

L. Caly, J. D. Druce, M. G. Catton, D. A. Jans and K. M. Wagstaff, The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro, Antivir. Res. 178 (2020) Article ID 104787 (4 pages); https://doi.org/10.1016/j.antiviral.2020.10478710.1016/j.antiviral.2020.104787Search in Google Scholar

N. Zhou, T. Pan, J. Zhang, Q. Li, X. Zhang, C. Bai, F. Huang, T. Peng, J. Zhang, C. Liu, L. Tao and H. Zhang, Glycopeptide antibiotics potently inhibit cathepsin L in the late endosome/lysosome and block the entry of ebola virus, middle east respiratory syndrome coronavirus (MERSCoV), and Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV), J. Biol. Chem. 291 (2016) 9218–9232; https://doi.org/10.1074/jbc.M116.71610010.1074/jbc.M116.716100Search in Google Scholar

S. A. Baron, C. Devaux, P. Colson, D. Raoult and J. M. Rolain, Teicoplanin: an alternative drug for the treatment of COVID-19, Int. J. Antimicrob. Agents 55 (2020) Article ID 105944 (2 pages); https://doi.org/10.1016/j.ijantimicag.2020.10594410.1016/j.ijantimicag.2020.105944Search in Google Scholar

T. Herold, V. Jurinovic, C. Arnreich, B. J. Lipworth, J. C. Hellmuth, M. von Bergwelt-Baildon, M. Klein and T. Weinberger, Elevated levels of IL-6 and CRP predict the need for mechanical ventilation in COVID-19, J. Allergy Clin. Immunol. 146 (2020) 128–136; https://doi.org/10.1016/j.jaci.2020.05.00810.1016/j.jaci.2020.05.008Search in Google Scholar

Chinese Clinical Trial Register (ChiCTR), Comparative effectiveness and safety of ribavirin plus interferon-alpha, lopinavir/ritonavir plus interferon-alpha and ribavirin plus lopinavir/ritonavir plus interferon-alphain in patients with mild to moderate novel coronavirus pneumonia; http://www.chictr.org.cn/showprojen.aspx?proj=48782; last access date February 21, 2021.10.2139/ssrn.3576905Search in Google Scholar

NIH, Efficacy and Safety of IFN-A2β in the Treatment o Novel Coronavirus Patients; https://clinicaltrials.gov/ct2/show/NCT04293887; last access date February 21, 2021.Search in Google Scholar

C. D. Russell, J. E. Millar and J. K. Baillie, Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury, Lancet 395 (2020) 473–475; https://doi.org/10.1016/S0140-6736(20)30317-210.1016/S0140-6736(20)30317-2Search in Google Scholar

NIH, COVID-19 Treatment Guidelines; https://www.covid19treatmentguidelines.nih.gov/immunomodulators/corticosteroids/#:~:text=Given%20the%20potential%20benefit%20of,supplemental%20oxygen%20but%20who%20are; last access date February 21, 2021.Search in Google Scholar

L. Li, W. Zhang, Y. Hu, X. Tong, S. Zheng, J. Yang, Y. Kong, L. Ren, Q. Wei, H. Mei, C. Hu, C. Tao, R. Yang, J. Wang, Y. Yu, Y. Guo, X. Wu, Z. Xu, L. Zeng, N. Xiong, L. Chen, J. Wang, N. Man, Y. Liu, H. Xu, E. Deng, X. Zhang, C. Li, C. Wang, S. Su, L. Zhang, J. Wang, Y. Wu and Z. Liu, Effect of convalescent plasma therapy on time to clinical improvement in patients with severe and life-threatening COVID-19: a randomized clinical trial, JAMA 324 (2020) 460–470; https://doi.org/10.1001/jama.2020.1004410.1001/jama.2020.10044Search in Google Scholar

FDA, Recommendations for Investigational COVID-19 Convalescent Plasma; https://www.fda.gov/vaccines-blood-biologics/investigational-new-drug-ind-or-device-exemption-ide-process-cber/recommendations-investigational-covid-19-convalescent-plasma; last access date February 21, 2021.Search in Google Scholar

NIH, Safety, Immunogenicity, and Efficacy of INO-4800 for COVID-19 in Healthy Seronegative Adults at High Risk of SARS-Cov-2 Exposure; https://clinicaltrials.gov/ct2/show/NCT04642638; last access date February 21, 2021.Search in Google Scholar

NIH, A Study of a Candidate COVID-19 Vaccine (COV001); https://clinicaltrials.gov/ct2/show/NCT04324606; last access date February 21, 2021.Search in Google Scholar

NIH, Clinical Trial of Efficacy and Safety of Sinovac’s Adsorbed COVID-19 (Inactivated) Vaccine in Healthcare Professionals (PROFISCOV); https://clinicaltrials.gov/ct2/show/NCT04456595; last access date February 21, 2021.Search in Google Scholar

NIH, A Study to Evaluate Efficacy, Safety, and Immunogenicity of mRNA-1273 Vaccine in Adults Aged 18 Years and Older to Prevent COVID-19; https://clinicaltrials.gov/ct2/show/NCT04470427; last access date February 21, 2021.Search in Google Scholar

NIH, Phase III Trial of a COVID-19 Vaccine of Adenovirus Vector in Adults 18 Years Old and Above; https://clinicaltrials.gov/ct2/show/NCT04526990; last access date February 21, 2021.Search in Google Scholar

F. C. Zhu, Y. H. Li, X. H. Guan, L. H. Hou, W. J. Wang, J. X, Li, S. P. Wu, B. S. Wang, Z. Wang, L. Wang, S. Y. Jia, H. D. Jiang, L. Wang, T. Jiang, Y. Hu, J. B. Gou, S. B. Xu, J. J. Xu, X. W. Wang, W. Wang and W. Chen, Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: a dose escalation, open-label, non-randomised, first-in-human trial, Lancet 395 (2020) 1845–1854; https://doi.org/10.1016/S0140-6736(20)31208-310.1016/S0140-6736(20)31208-3Search in Google Scholar

Clinical Trials Arena, Serum Institute of India Brings Covid-19 Vaccine into Animal Testing; https://www.clinicaltrialsarena.com/news/serum-institute-india-covid-19-vaccine/; last access date February 21, 2021.Search in Google Scholar

NIH, Study to Describe the Safety, Tolerability, Immunogenicity, and Efficacy of RNA Vaccine Candidates Against COVID-19 in Healthy Individuals; https://clinicaltrials.gov/ct2/show/NCT04368728; last access date February 21, 2021.Search in Google Scholar

NIH, Whole-Virion Inactivated SARS-CoV-2 Vaccine (BBV152) for COVID-19 in Healthy Volunteers (BBV152); https://clinicaltrials.gov/ct2/show/NCT04471519; last access date February 21, 2021.Search in Google Scholar

NIH, A Phase III Clinical Trial of the Immunogenicity and Safety of the Gam-COVID-Vac Vaccine Against COVID-19 in the UAE, SPUTNIK-UAE, https://clinicaltrials.gov/ct2/show/NCT04656613; last access date February 21, 2021.Search in Google Scholar

Against COVID-19 in the UAE, SPUTNIK-UAE, https://clinicaltrials.gov/ct2/show/NCT04656613; last access date February 21, 2021.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo