1. M. C. Andre, J. F. Hausman and G. Guerriero, Cannabis sativa: The plant of the thousand and one molecules, Front. Plant. Sci. 19 (2016) 1–17; in Google Scholar

2. D. Namdar, M. Mazuz, A. Ion and H. Koltai, Variation in the compositions of cannabinoid and terpenoids in Cannabis sativa derived from inflorescence position along the steam and extraction, Ind. Crops. Prod. 113 (2018) 376–382; in Google Scholar

3. J. C. Turner, J. K. Hemphill and P. G. Mahlberg, Quantitative determination of cannabinoids in individual glandular trichomes of Cannabis sativa L. (Cannabaceae), Am. J. Bot.65 (1978) 1103–1106; in Google Scholar

4. K. W. Hillig and P. G. Mahlberg, A chemotaxonomic analysis of cannabinoid variation in Cannabis (Cannabaceae), Am. J. Bot. 91 (2004) 966–975; in Google Scholar

5. G. T. DeLong, C. E. Wolf, A. Poklis and A. H. Lichtman, Pharmacological evaluation of the neutral constituent of Cannabis sativa, cannabichromene and its modulation by delta-9-tetrahidorcannabinol, Drug Alcohol. Depend. 112 (2010) 126–133; in Google Scholar

6. E. B. Russo and J. Marcu, Cannabis pharmacology: The usual suspects and a few promising leads, Adv. Pharmacol. 80 (2017) 67–134; in Google Scholar

7. D. Pacifico, F. Miselli and A. Carboni, Time course of cannabinoid accumulation and chemotype development during the growth of Cannabis sativa L., Euphytica160 (2008) 231–240; in Google Scholar

8. E. Small and H. D. Beckstead, Common cannabinoid phenotypes in 350 stocks of Cannabis, Lloydia36 (1973) 144–165.Search in Google Scholar

9. G. Fournier, C. Richez-Dumanois, J. Duvezin and J. P. Mathieu, Identification of a new chemotype in Cannabis sativa: cannabigerol-dominant plants, biogenetic and agronomic prospects, Planta Med. 53 (1987) 277–280; https://doi:10.1055/s-2006-96270510.1055/s-2006-962705Search in Google Scholar

10. J. R. Valle, J. E. V. Vieira, J. G. Auce′lio and I. F. M. Valio, Influence of photoperiodism on cannabinoid content of Cannabis sativa L., Bull. Narc.30 (1978) 67–68.Search in Google Scholar

11. D. W. Pate, Chemical ecology of Cannabis, J. Int. Hemp Assoc.29 (1994) 32–37.Search in Google Scholar

12. F. A. Bazzaz, D. Dusek, D. S. Seigler and A. W. Haney, Photosynthesis and cannabinoid content of temperate and tropical populations of Cannabis sativa, Biochem. Syst. Ecol.3 (1975) 15–18; in Google Scholar

13. I. Bocsa, P. Mathe and L. Hangyel, Effect of nitrogen on tetrahydrocannabinol (THC) content in hemp (Cannabis sativa L.) leaves at different positions, J. Int. Hemp Assoc.4 (1997) 80–81.Search in Google Scholar

14. C. B. Coffman and W. A. Gentner, Responses of greenhouse grown Cannabis sativa L. to nitrogen, phosphorous, and potassium, Agron. J.69 (1977) 832–836; in Google Scholar

15. E. H. Small, D. Beckstead and A. Chan, The evolution of cannabinoid phenotypes in Cannabis, Econ. Bot.29 (1975) 219–232.10.1007/BF02873168Search in Google Scholar

16. Y. Gaoni and R. Mechoulam, Cannabichromene a new active principle in hashish, Chem. Commun.1 (1966) 20–21.Search in Google Scholar

17. S. Sirikantaramas, F. Taura, S. Morimoto and Y. Shoyama, Recent advances in Cannabis sativa research: biosynthetic studies and its potential in biotechnology, Curr. Pharm. Biotechnol.8 (2007) 237–243; in Google Scholar

18. M. Fellermeier and M. H. Zenk, Prenylation of olivetolate by a hemp transferase yields cannabigerolic acid the precursor of tetrahydrocannabinol, FEBS Lett.427 (1998) 283–285; in Google Scholar

19. D. F. Wong, H. Kuwabara, A. G. Horti, V. Raymont, J. Brasic, M. Guavera, W. Ye, R. F. Dannals, H. T. Ravert, A. Nandi, A. Rahmim, J. E. Ming, I. Grachev, C. Roy and N. Cascella, Quantification of cerebral cannabinoid receptors subtype 1 (CB1) in healthy subjects and schizophrenia by the novel PTE radioligand (11C)OMAR, Neuroimage52 (2010) 1505–1513; in Google Scholar

20. T. Lowin and R. H. Straub, Cannabinoid-based drugs targeting CB1 and TRPV1, the sympathetic nervous system, and arthritis, Arthritis Res. Ther.17 (2015) 226; in Google Scholar

21. C. Muller, P. Morales and P. H. Reggio, Cannabinoid ligands targeting TRP channels, Front. Mol. Neurosci. 11 (2019) Article ID 487 (16 pages); in Google Scholar

22. Y. Gaoni and R. Mechoulam, The structure and function of cannabigerol, a new hashish constituent, Proc. Chem. Soc. 1 (1964) 82–83.10.1039/sa9640100082Search in Google Scholar

23. M. G. Cascio, L. A. Gauson, L. A. Stevenson, R. A. Ross and R. G. Pertwee, Evidence that the plant cannabinoid cannabigerol is a highly potent alpha2-adrenoceptor agonist and moderately potent 5HT1A receptor antagonist, Br. J. Pharmacol.159 (2010) 129–141; in Google Scholar

24. H. N. Eisohly, C. E. Turner, A. M. Clark and M. A. Elsohly, Synthesis and antimicrobial activities of certain cannabichromene and cannabigerol related compounds, J. Pharm. Sci. 71 (1982) 1319–1323; in Google Scholar

25. F. Pollastro, O. Taglialatela-Scafati, M. Allara, E. Munoz, V. Di Marzo, L. De Petrocellis and G. Appendino, Bioactive prenylogus cannabinoid from fiber hemp, J. Nat. Prod. 74 (2011) 2019–2020; in Google Scholar

26. N. Iwata and S. Kitanaka, New cannabinoid-like chromane and chromene derivatives from Rhododendron anthopogonoides, Chem. Pharm. Bull.59 (2011) 1409–1412; in Google Scholar

27. L. De Petrocellis, A. Ligresti, A. S. Moriello, M. Allara, T. Bisogno, S. Petrosino, C. G. Stott and V. Di Marzo, Effects of cannabinoids and cannabinoid-enriched cannabis extracts on TRP channels and endocannabinoid metabolic enzymes, Br. J. Pharmacol. 163 (2011) 1479–1494; in Google Scholar

28. A. A. Izzo, R. Capasso, G. Aviello, F. Borrelli, B. Romano, F. Piscitelli, L. Gallo, F. Capasso, P. Orlando and V. Di Marzo, Inhibitory effect of cannabichromene, a major non-psychotropic cannabinoid extracted from Cannabis sativa, on inflammation-induced hypermotility in mice, Br. J. Parmacol. 166 (2012) 1444–1460; in Google Scholar

29. F. Taura, S. Morimoto, Y. Shoyama and R. Mechoulam, First direct evidence for the mechanism of delta-1-tetrahydrocannabinolic acid biosynthesis, J. Am. Chem. Soc. 38 (1995) 9766–9767; in Google Scholar

30. F. Taura, S. Morimoto and Y. Shoyama, Purification and characterization of cannabidiolic-acid synthase from Cannabis sativa L., J. Biol. Chem.271 (1996) 17411–17416; in Google Scholar

31. E. P. M. De Meijer, M. Bagatta, A. Carboni, P. Crucitti, V. M. Cristiana Moliterni, P. Ranalli and G. Mandolino, The inheritance of chemical phenotype in Cannabis sativa L., Genetics163 (2003) 335–346.10.1093/genetics/163.1.335146242112586720Search in Google Scholar

32. E. P. M. De Meijer and K. M. Hammond, The inheritance of chemical phenotype in Cannabis sativa L. (II): Cannabigerol predominant plants, Euphytica145 (2005) 189–198; in Google Scholar

33. E. P. M. De Meijer and K. M. Hammond, The inheritance of the chemical phenotype in Cannabis sativa L. (III): variation in cannabichromene proportion, Euphytica165 (2009) 293–331; in Google Scholar

34. V. Di Marzo, New approaches and challenges to targeting the endocannabinoid system, Nat. Rev. Drug Discov.17 (2018) 623–639; http://doi:10.1038/nrd.2018.11510.1038/nrd.2018.11530116049Search in Google Scholar

35. G. Appendino, S. Gibbons, A. Giana, A. Pagani, G. Grasi, M. Stavri, E. Smith and M. M. Rahman, Antibacterial cannabinoids from Cannabis sativa: A structure-activity study, J. Nat. Prod. 71 (2008) 1427–1430; in Google Scholar

36. S. Beak, Y. O. Kim, J. S. Kwag, K. E. Choi, W. Y. Jung and D. S. Han, Boron trifluoride etherate on silica – A modified Lewis acid reagent (VII). Antitumor activity of cannabigerol against human oral epitheloid carcinoma cells, Arch. Pharm. Res. 21 (1998) 353–356.10.1007/BF02975301Search in Google Scholar

37. A. Ligresti, A. S. Moriello, K. Starowicz, I. Matias, S. Pisanti, L. De Petrocellis, C. Laezza, G. Portella, M. Bifulco and V. Di Marzo, Antitumor activity of plant cannabinoids with emphasis on the effect of cannabidiol on human breast carcinoma, J. Pharmacol. Exp. Ther. 318 (2006) 1375–1387; in Google Scholar

38. D. I. Brierley, J. Samuels, M. Duncan, B. J. Whalley and C. M. Williams, Cannabigerol is a novel, well-tolerated appetite stimulant in pre-satiated rats, Psychopharmacology (Berlin) 233 (2016) 3603–3613; in Google Scholar

39. J. A. Farrimond, B. J. Whalley and C. M. Williams, Cannabinol and cannabidiol exert opposing effects on rat feeding patterns, Psychopharmacology (Berlin) 223 (2012) 117–129; in Google Scholar

40. A. Smeriglio, S. V. Giofre, E. M. Galati, M. T. Menforte, N. Cicero, V. D‘Angelo, G. Grassi and C. Circosta, Inhibition of aldose activity by Cannabis sativa chemotypes extracts with high content of cannabidiol or cannabigerol, Fitoterapia127 (2018) 101–108; in Google Scholar

41. W. M. Davis and N. S. Hatoum, Neurobehavioral actions of cannabichromene and interactions with delta-9-tetrahydrocannabinol, Gen. Pharmacol.-Vasc. S.14 (1983) 247–252; in Google Scholar

42. N. Shinjyo and V. Di Marzo, The effect of cannabichromene on adult neural stem/progenitor cells, Neurochem. Int.63 (2013) 432–437; in Google Scholar

43. A. A. Izzo, F. Borrelli, R. Capasso, V. Di Marzo and R. Mechoulam, Non-psychotropic plant cannabinoids: new therapeutic opportunities from ancient herb, Trends Pharmacol. Sci. 30 (2009) 515–527; in Google Scholar

44. C. E. Turner and M. A. Elsohly, Biological activity of cannabichromene, its homologs and isomers, J. Clin. Pharmacol.21 (1981) 283–291; in Google Scholar

Publication timeframe:
4 times per year
Journal Subjects:
Pharmacy, other