1. bookVolume 71 (2021): Issue 2 (June 2021)
Journal Details
License
Format
Journal
First Published
28 Feb 2007
Publication timeframe
4 times per year
Languages
English
access type Open Access

Identification of potential COVID-19 main protease inhibitors using structure-based pharmacophore approach, molecular docking and repurposing studies

Published Online: 04 Nov 2020
Page range: 163 - 174
Accepted: 02 Jun 2020
Journal Details
License
Format
Journal
First Published
28 Feb 2007
Publication timeframe
4 times per year
Languages
English
Abstract

The current outbreak of novel coronavirus (COVID-19) infections urges the need to identify potential therapeutic agents. Therefore, the repurposing of FDA-approved drugs against today’s diseases involves the use of de-risked compounds with potentially lower costs and shorter development timelines. In this study, the recently resolved X-ray crystallographic structure of COVID-19 main protease (Mpro) was used to generate a pharmacophore model and to conduct a docking study to capture antiviral drugs as new promising COVID-19 main protease inhibitors. The developed pharmacophore successfully captured five FDA-approved antiviral drugs (lopinavir, remdesivir, ritonavir, saquinavir and raltegravir). The five drugs were successfully docked into the binding site of COVID-19 Mpro and showed several specific binding interactions that were comparable to those tying the co-crystallized inhibitor X77 inside the binding site of COVID-19 Mpro. Three of the captured drugs namely, remdesivir, lopinavir and ritonavir, were reported to have promising results in COVID-19 treatment and therefore increases the confidence in our results. Our findings suggest an additional possible mechanism of action for remdesivir as an antiviral drug inhibiting COVID-19 Mpro. Additionally, a combination of structure-based pharmacophore modeling with a docking study is expected to facilitate the discovery of novel COVID-19 Mpro inhibitors.

Keywords

1. N. Zhu, D. Zhang, W. Wang, X. Li, B. Yang, J. Song, X. Zhao, B. Huang, W. Shi, R. Lu and P. Niu, A novel coronavirus from patients with pneumonia in China, 2019, N. Engl. J. Med. 382 (2020) 727–733; https://doi.org/10.1056/NEJMoa2001017Search in Google Scholar

2. A. Zumla, J. F. Chan, E. I. Azhar, D. S. Hui and K. Y Yuen, Coronaviruses—drug discovery and therapeutic options, Nat. Rev. Drug Discov. 15 (2016) 327–347; https://doi.org/10.1038/nrd.2015.37Search in Google Scholar

3. F. He, Y. Deng and W. Li, Coronavirus Disease 2019 (COVID-19): What we know? J. Med. Virol. (2020) (7 pages); https://doi.org/10.1002/jmv.25766Search in Google Scholar

4. C. C. Lai, T. P. Shih, W. C. Ko, H. J. Tang and P. R. Hsueh, Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges, Int. J. Antimicrob. Agents55 (2020) Article ID 105924; https://doi.org/10.1016/j.ijantimicag.2020.105924Search in Google Scholar

5. J. She, J. Jiang, L. Ye, L. Hu, C. Bai and Y. Song, 2019 Novel coronavirus of pneumonia in Wuhan, China: emerging attack and management strategies, Clin.. Transl. Med.9 (2020) Article ID 19; https://doi.org/10.1186/s40169-020-00271-zSearch in Google Scholar

6. World Health Organization, Novel Coronavirus (Covid-19): Situation Report, 3. 2020, WHO, Geneve 2020; https://www.who.int/emergencies/diseases/novel-coronavirus-2019?gclid=CjwKCAjwq832BRA5EiwACvCWsSQ_-qAh4z8Z5_gvnayDI2PrSx4poydPpu-pvDZX-k34RQDqn8TgEBoChdkQA-vD_BwE; last access date May 31, 2020Search in Google Scholar

7. H. A. Rothan and S. N. Byrareddy, The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak, J. Autoimmun.109 (2020) Article ID 102433 (4 pages); https://doi.org/10.1016/j.jaut.2020.102433Search in Google Scholar

8. S. L. Senanayake, Drug repurposing strategies for COVID-19, Future Drug Discov.2 (2020) (3 pages); https://doi.org/10.4155/fdd-2020-0010Search in Google Scholar

9. S. Pushpakom, F. Iorio, P. A. Eyers, K. J. Escott, S. Hopper, A. Wells, A. Doig, T. Guilliams, J. Latimer, C. McNamee and A. Norris, Drug repurposing: progress, challenges and recommendations, Nat. Rev. Drug Discov. 18 (2019) 41–58; https://doi.org/10.1038/nrd.2018.168Search in Google Scholar

10. S. G. V. Rosa and W. C. Santos, Clinical trials on drug repositioning for COVID-19 treatment, Rev. Panam. Salud Públ. 44 (2020) e40; https://doi.org/10.26633/RPSP.2020.40Search in Google Scholar

11. A. Gaurav, V. Gautam, S. Pereira, J. Alvarez-Leite, F. Vetri, M. Choudhury, D. Pelligrino, P. Sundivakkam, K. Radhakrishnan and A. Krieger, Structure-based three-dimensional pharmacophores as an alternative to traditional methodologies, J. Receptor Ligand Channel Res.7 (2014) 27–38; https://doi.org/10.2147/JRLCR.S46845Search in Google Scholar

12. M. P. Sanders, R. McGuire, L. Roumen, I. J. de Esch, J. de Vlieg, J. P. Klomp and C. de Graaf, From the protein’s perspective: the benefits and challenges of protein structure-based pharmacophore modeling, MedChemComm.3 (2012) 28–38; https://doi.org/10.1039/C1MD00210DSearch in Google Scholar

13. M. Wieder, U. Perricone, T. Seidel, S. Boresch and T. Langer, Comparing pharmacophore models derived from crystal structures and from molecular dynamics simulations, Monatsh. Chem. 147 (2016) 553–563, https://doi.org/10.1007/s00706-016-1674-1Search in Google Scholar

14. M. Arooj, S. Sakkiah, S. Kim, V. Arulalapperumal and K. W. Lee, A combination of receptor-based pharmacophore modeling & QM techniques for identification of human chymase inhibitors. PLoS One8 (2013) e63030; https://doi.org/10.1371/journal.pone.0063030Search in Google Scholar

15. Z. Jin, X. Du, Y. Xu, Y. Deng, M. Liu, Y. Zhao, B. Zhang, X. Li, L. Zhang, C. Peng, Y. Duan, J. Yu, L. Wang, K. Yang, F. Liu, R. Jiang, X. Yang, T. You, X. Liu, X. Yang, F. Bai, H. Liu, X. Liu, L. W. Guddat, W. Xu, G. Xiao, C. Qin, Z. Shi, H. Jiang, Z. Rao and H. Yang: Structure of Mpro from SARSCoV-2 and discovery of its inhibitors, Nature5 (2020) (20 pages); https://doi.org/10.1038/s41586-020-2223-ySearch in Google Scholar

16. L. A. Dahabiyeh, E. Y. Abu-rish and M. O. Taha, Inhibition of monoglyceride lipase by proton pump inhibitors: investigation using docking and in vitro experiments, Pharmacol. Rep.72 (2019) 435–442; https://doi.org/10.1007/s43440-019-00013-0Search in Google Scholar

17. L. A. Dahabiyeh, Y. Bustanji and M. O. Taha, The herbicide quinclorac as potent lipase inhibitor: Discovery via virtual screening and in vitro/in vivo validation, Chem. Biol. Drug Des. 93 (2019) 787–797; https://doi.org/10.1111/cbdd.13463Search in Google Scholar

18. D. J. Diller and K. M. Merz, Jr, High throughput docking for library design and library prioritization, Proteins43 (2001) 113–124; https://doi.org/10.1002/1097-0134(20010501)43:2<113::aidprot1023>3.0.co;2-tSearch in Google Scholar

19. S. N. Rao, M. S. Head, A. Kulkarni and J. M. LaLonde, Validation studies of the site-directed docking program LibDock, J. Chem. Inf. Model.47 (2007) 2159–2171; https://doi.org/10.1021/ci6004299Search in Google Scholar

20. A. N. Jain, Scoring noncovalent protein-ligand interactions: a continuous differentiable function tuned to compute binding affinities, J. Comput. Aided Mol. Des.10 (1996) 427–440; https://doi.org/10.1007/BF00124474Search in Google Scholar

21. A. Krammer, P. D. Kirchhoff, X. Jiang, C. Venkatachalam and M. Waldman, LigScore: a novel scoring function for predicting binding affinities, J. Mol. Graph. Model. 23 (2005) 395–407; https://doi.org/10.1016/j.jmgm.2004.11.007Search in Google Scholar

22. C. M. Venkatachalam, X. Jiang, T. Oldfield and M. Waldman, LigandFit: a novel method for the shape-directed rapid docking of ligands to protein active sites, J. Mol. Graph. Model. 21 (2003) 289–307; https://doi.org/10.1016/s1093-3263(02)00164-xSearch in Google Scholar

23. D. K. Gehlhaar, D. Bouzida and P. A. Rejto, Reduced dimensionality in ligand-protein structure prediction: covalent inhibitors of serine proteases and design of site-directed combinatorial libraries, ACS Pub.719 (1999); https://doi.org/10.1021/bk-1999-0719.ch019Search in Google Scholar

24. I. Muegge, PMF scoring revisited, J. Med. Chem. 49 (2006) 5895–5902; https://doi.org/10.1021/jm050038sSearch in Google Scholar

25. I. Muegge and Y. C. Martin, A general and fast scoring function for protein-ligand interactions: a simplified potential approach, J. Med. Chem. 42 (1999) 791–804; https://doi.org/10.1021/jm980536jSearch in Google Scholar

26. J. Wang, Fast identification of possible drug treatment of coronavirus disease-19 (COVID-19) through computational drug repurposing study, J. Chem. Inf. Model. (2020) (10 pages); https://doi.org/10.1021/acs.jcim.0c00179Search in Google Scholar

27. A. Farag, P. Wang, M. Ahmed and H. Sadek, Identification of FDA approved drugs targeting COVID-19 virus by structure-based drug repositioning, ChemRxiv. (preprint) (2020); https://doi.org/10.26434/chemrxiv.12049647.v1Search in Google Scholar

28. A. D. Mesecar (Center for Structural Genomics of Infectious Diseases, CSGID), A taxonomically-driven approach to development of potent, broad-spectrum inhibitors of coronavirus main pro-tease including SARS-CoV-2 (COVID-19), to be published; PDB ID 6W63, title: Structure of COVID-19 main protease bound to potent broad-spectrum non-covalent inhibitor X77, 2020; https://doi.org/10.2210/pdb6W63/pdbSearch in Google Scholar

29. J. Meslamani and D. Rognan, Protein-ligand pharmacophores: concept, design and applications, CICSJ Bull. 33 (2015) 27–32; https://doi.org/10.11546/cicsj.33.27Search in Google Scholar

30. L. Dong, S. Hu and J. Gao, Discovering drugs to treat coronavirus disease 2019 (COVID-19), Drug Discov. Ther.14 (2020) 58–60; https://doi.org/10.5582/ddt.2020.01012Search in Google Scholar

31. E. P. Tchesnokov, J. Y. Feng, D. P. Porter and M. Götte, Mechanism of inhibition of Ebola virus RNA-dependent RNA polymerase by remdesivir, Viruses11 (2019) Article ID 326; https://doi.org/10.3390/v11040326Search in Google Scholar

32. J. A. Al-Tawfiq, A. H. Al-Homoud and Z. A. Memish, Remdesivir as a possible therapeutic option for the COVID-19, Travel. Med. Infect. Dis.34 (2020) Article ID 101615; https://doi.org/10.1016/j.tmaid.2020.101615Search in Google Scholar

33. T. Stanković, J. Dinić, A. Podolski-Renić, L. Musso, S. S. Burić, S. Dallavalle and M. Pešić, Dual inhibitors as a new challenge for cancer multidrug resistance treatment, Curr. Med. Chem.26 (2019) 6074–6106; https://doi.org/10.2174/0929867325666180607094856Search in Google Scholar

34. A. Chandwani and J. Shuter, Lopinavir/ritonavir in the treatment of HIV-1 infection: a review, Ther. Clin. Risk Manag. 4 (2008) 1023–1033; https://doi.org/10.2147/tcrm.s3285Search in Google Scholar

35. J. Dorward and K. Gbinigie, Lopinavir/ritonavir: A rapid review of effectiveness in COVID-19 (on behalf of the Oxford COVID-19 Evidence Service Team Centre for Evidence-Based Medicine-CEBM); https://www.cebm.net/covid-19/lopinavir-ritonavir-a-rapid-review-of-the-evidence-for-effectiveness-in-treating-covid/; last access date April 14, 2020Search in Google Scholar

36. B. Cao, Y. Wang, D. Wen, W. Liu, J. Wang, G. Fan, L. Ruan, B Song, Y. Cai, M. Wei, X. Li, J. Xia, N. Chen, J. Xiang, T. Yu, T. Bai, X. Xie, L. Zhang, C. Li, Y. Yuan, H. Chen, H. Li, H. Huang, S. Tu, F. Gong, Y. Liu, Y. Wei, C. Dong, F. Zhou, X. Gu, J. Xu, Z. Liu, Y. Zhang, H. Li, L. Shang, K. Wang, K. Li, X. Zhou, X. Dong, Z. Qu, S. Lu, X. Hu, S. Ruan, S. Luo, J. Wu, L. Peng, F. Cheng, L. Pan, J. Zou, C. Jia, J. Wang, X. Liu, S. Wang, X. Wu, Q. Ge, J. He, H. Zhan, F. Qiu, L. Guo, C. Huang, T. Jaki, F. G. Hayden, P. W. Horby, D. Zhang and C. Wang, A trial of lopinavir-ritonavir in adults hospitalized with severe Covid-19, N. Engl. J. Med. 382 (2020) 1787–1799; https://doi.org/10.1056/NEJMoa2001282Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo