Cite

1. R. G. Frykberg and J. Banks, Challenges in the treatment of chronic wounds, Adv. Wound Care4 (2015) 560–582; https://doi.org/10.1089/wound.2015.063510.1089/wound.2015.0635Search in Google Scholar

2. T. Shipperley, C. Martin and B. Healthcare, The physiology of wound healing : an emergency response, Surg. 35 (2011) 8–10; http://www.sciencedirect.com/science/article/pii/S0263931917301369Search in Google Scholar

3. K. Kaplani, S. Koutsi, V. Armenis, F. G. Skondra, N. Karantzelis, S. Champeris Tsaniras and S. Taraviras, Wound healing related agents: Ongoing research and perspectives, Adv. Drug Deliv. Rev. (2018); https://doi.org/10.1016/j.addr.2018.02.00710.1016/j.addr.2018.02.007Search in Google Scholar

4. Y.-K. Wu, N.-C. Cheng and C.-M. Cheng, Biofilms in chronic wounds: pathogenesis and diagnosis, Trends Biotechnol. 37 (2019) 505–517; https://doi.org/10.1016/j.tibtech.2018.10.01110.1016/j.tibtech.2018.10.011Search in Google Scholar

5. R. J. Reiter, D.-X. Tan, L. Fuentes-Broto and M. Luciano, Chapter 8 – Melatonin: A multitasking molecule, Progress in Brain Res.181 (2010) 127–151; https://doi.org/10.1016/S0079-6123(08)81008-410.1016/S0079-6123(08)81008-4Search in Google Scholar

6. R. Hardeland, A. T. Slominski, R. M. Slominski, R. J. Reiter, M. A. Zmijewski and R. Paus, Melatonin: A cutaneous perspective on its production, metabolism, and functions, J. Invest. Dermatol.138 (2018) 490–499; https://doi.org/10.1016/j.jid.2017.10.02510.1016/j.jid.2017.10.025582891029428440Search in Google Scholar

7. A. Crooke, A. Guzman-Aranguez, A. Mediero, P. Alarma-Estrany, G. Carracedo, T. Pelaez, A. Peral and J. Pintor, Effect of melatonin and analogues on corneal wound healing: involvement of Mt2 melatonin receptor, Curr. Eye Res.40 (2015) 56–65; https://doi.org/10.3109/02713683.2014.91454010.3109/02713683.2014.91454024892818Search in Google Scholar

8. R. Song, L. Ren, H. Ma, R. Hu, H. Gao, L. Wang, X. Chen, Z. Zhao and J. Liu, Melatonin promotes diabetic wound healing in vitro by regulating keratinocyte activity, Am. J. Transl. Res.8 (2016) 4682–4693.Search in Google Scholar

9. R. Murali, P. Thanikaivelan and K. Cheirmadurai, Melatonin in functionalized biomimetic constructs promotes rapid tissue regeneration in Wistar albino rats, J. Mater. Chem. B4 (2016) 5850; https://doi.org/10.1039/c6tb01221c.10.1039/C6TB01221C32263758Search in Google Scholar

10. I. Garcia-Orue, J. L. Pedraz, R. M. Hernandez and M. Igartua, Nanotechnology-based delivery systems to release growth factors and other endogenous molecules for chronic wound healing, J. Drug Deliv. Sci. Technol.42 (2017) 2–17; https://doi.org/10.1016/j.jddst.2017.03.00210.1016/j.jddst.2017.03.002Search in Google Scholar

11. J. Pardeike, A. Hommoss and R. H. Müller, Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products, Int. J. Pharm.366 (2009) 170–184; https://doi.org/10.1016/j.ijpharm.2008.10.00310.1016/j.ijpharm.2008.10.00318992314Search in Google Scholar

12. G. Gainza, M. Pastor, J. J. Aguirre, S. Villullas, J. L. Pedraz, R. M. Hernandez and M. Igartua, A novel strategy for the treatment of chronic wounds based on the topical administration of rhEGF-loaded lipid nanoparticles: In vitro bioactivity and in vivo effectiveness in healing-impaired db/db mice, J. Control. Release185 (2014) 51–61; https://doi.org/10.1016/j.jconrel.2014.04.03210.1016/j.jconrel.2014.04.03224794895Search in Google Scholar

13. N. Karimi, B. Ghanbarzadeh, H. Hamishehkar, B. Mehramuz and H. S. Kafil, Antioxidant, antimicrobial and physicochemical properties of turmeric extract-loaded nanostructured lipid carrier (NLC), Colloid. Interface Sci. Commun.22 (2018) 18–24; https://doi.org/10.1016/j.colcom.2017.11.00610.1016/j.colcom.2017.11.006Search in Google Scholar

14. F. Saporito, G. Sandri, M. C. Bonferoni, S. Rossi, C. Boselli, A. I. Cornaglia, B. Mannucci, P. Grisoli, B. Vigani and F. Ferrari, Essential oil-loaded lipid nanoparticles for wound healing, Int. J. Nanomed.13 (2018) 175–186; https://doi.org/10.2147/IJN.S15252910.2147/IJN.S152529574796329343956Search in Google Scholar

15. Z. Ma, A. Garrido-Maestu and K. C. Jeong, Application, mode of action, and in vivo activity of chitosan and its micro- and nanoparticles as antimicrobial agents: A review, Carbohydr. Polym.176 (2017) 257–265; https://doi.org/10.1016/j.carbpol.2017.08.08210.1016/j.carbpol.2017.08.08228927606Search in Google Scholar

16. V. Patrulea, V. Ostafe, G. Borchard and O. Jordan, Chitosan as a starting material for wound healing applications, Eur. J. Pharm. Biopharm. (2015); https://doi.org/10.1016/j.ejpb.2015.08.00410.1016/j.ejpb.2015.08.00426614560Search in Google Scholar

17. M. Duvnjak Romić, M. Š. Klarić, J. Lovrić, I. Pepić, B. Cetina-Čižmek, J. Filipović-Grčić and A. Hafner, Melatonin-loaded chitosan/Pluronic® F127 microspheres as in situ forming hydrogel: An innovative antimicrobial wound dressing, Eur. J. Pharm. Biopharm.107 (2016) 67–79; https://doi.org/10.1016/j.ejpb.2016.06.01310.1016/j.ejpb.2016.06.01327329001Search in Google Scholar

18. M. Duvnjak Romić, D. Špoljarić, M. Š. Klarić, B. Cetina-Čižmek, J. Filipović-Grčić and A. Hafner, Melatonin loaded lipid enriched chitosan microspheres – Hybrid dressing for moderate exuding wounds, J. Drug Deliv. Sci. Technol. (2019); https://doi.org/10.1016/j.jddst.2019.05.00410.1016/j.jddst.2019.05.004Search in Google Scholar

19. B. N. Estevinho, F. Rocha, L. Santos and A. Alves, Microencapsulation with chitosan by spray drying for industry applications – A review, Trends Food Sci. Technol. 31 (2013) 138–155; https://doi.org/10.1016/j.tifs.2013.04.00110.1016/j.tifs.2013.04.001Search in Google Scholar

20. B. R. P. Cabral, P. M. de Oliveira, G. M. Gelfuso, T. de S. C. Quintão, J. A. Chaker, M. G. de O. Karnikowski and E. F. Gris, Improving stability of antioxidant compounds from Plinia cauliflora (jabuticaba) fruit peel extract by encapsulation in chitosan microparticles, J. Food Eng.238 (2018) 195–201; https://doi.org/10.1016/j.jfoodeng.2018.06.00410.1016/j.jfoodeng.2018.06.004Search in Google Scholar

21. D. P. Gaspar, M. M. Gaspar, C. V. Eleutério, A. Grenha, M. Blanco, L. M. D. Gonçalves, P. Taboada, A. J. Almeida and C. Remunán-López, Microencapsulated solid lipid nanoparticles as a hybrid platform for pulmonary antibiotic delivery, Mol. Pharmaceutics14 (2017) 2977–2990; https://doi.org/10.1021/acs.molpharmaceut.7b0016910.1021/acs.molpharmaceut.7b0016928809501Search in Google Scholar

22. T. Wang, Q. Hu, M. Zhou, J. Xue and Y. Luo, Preparation of ultra-fine powders from polysaccharide-coated solid lipid nanoparticles and nanostructured lipid carriers by innovative nano spray drying technology, Int. J. Pharm.511 (2016) 219–222; https://doi.org/10.1016/j.ijpharm.2016.07.00510.1016/j.ijpharm.2016.07.00527395801Search in Google Scholar

23. H. Salminen, J. Ankenbrand, B. Zeeb, G. Badolato Bönisch, C. Schäfer, R. Kohlus and J. Weiss, Influence of spray drying on the stability of food-grade solid lipid nanoparticles, Food Res. Int.119 (2018) 741–750; https://doi.org/10.1016/j.foodres.2018.10.05610.1016/j.foodres.2018.10.056Search in Google Scholar

24. D. G. Sami, H. H. Heiba and A. Abdellatif, Wound healing models: A systematic review of animal and non-animal models, Wound Med.24 (2019) 8–17; https://doi.org/10.1016/j.wndm.2018.12.00110.1016/j.wndm.2018.12.001Search in Google Scholar

25. A. Stunova and L. Vistejnova, Dermal fibroblasts – A heterogeneous population with regulatory function in wound healing, Cytokine Growth Factor Rev.39 (2018) 137–150; https://doi.org/10.1016/j.cytogfr.2018.01.00310.1016/j.cytogfr.2018.01.003Search in Google Scholar

26. I. Rubelj, Telomere Q-PNA-FISH – reliable results from stochastic signals, PLoS One9 (2014) e92559; https://doi.org/10.1371/journal.pone.009255910.1371/journal.pone.0092559Search in Google Scholar

27. F. Felice, Y. Zambito, E. Belardinelli, A. Fabiano, T. Santoni and R. Di Stefano, Effect of different chitosan derivatives on in vitro scratch wound assay: A comparative study, Int. J. Biol. Macromol.76 (2015) 236–241; https://doi.org/10.1016/j.ijbiomac.2015.02.04110.1016/j.ijbiomac.2015.02.041Search in Google Scholar

28. A. D. Kulkarni, D. B. Bari, S. J. Surana and C. V Pardeshi, In vitro, ex vivo and in vivo performance of chitosan-based spray-dried nasal mucoadhesive microspheres of diltiazem hydrochloride, J. Drug Deliv. Sci. Technol.31 (2016) 108–117; https://doi.org/10.1016/j.jddst.2015.12.00410.1016/j.jddst.2015.12.004Search in Google Scholar

29. S. Demarger-Andre and A. Domard, Chitosan carboxylic acid salts in solution and in the solid state, Carbohydr. Polym.23 (1994) 211–219; https://doi.org/10.1016/0144-8617(94)90104-X10.1016/0144-8617(94)90104-XSearch in Google Scholar

30. N. El Moussaoui and A. Bendriss, The influence of storage conditions on melatonin stability, Int. J. Eng. Res. Technol.3 (2014) 2243–2246.Search in Google Scholar

31. M. Friciu, T. Savji, S. Zaraa and G. Leclair, Evaluation of stability of melatonin in extemporaneously compounded oral suspensions, J. Pharm. Pract. Res.46 (2016) 28–33; https://doi.org/10.1002/jppr.117110.1002/jppr.1171Search in Google Scholar

32. P. Linse and M. Malmsten, Temperature-dependent micellization in aqueous block copolymer solutions, Macromolecules25 (1992) 5434–5439; https://doi.org/10.1021/ma00046a04810.1021/ma00046a048Search in Google Scholar

33. A. Garcês, M. H. Amaral, J. M. Sousa Lobo and A. C. Silva, Formulations based on solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for cutaneous use: A review, Eur. J. Pharm. Sci.112 (2018) 159–167; https://doi.org/10.1016/j.ejps.2017.11.02310.1016/j.ejps.2017.11.02329183800Search in Google Scholar

34. B. M. Dulmovits and I. M. Herman, Microvascular remodeling and wound healing: A role for pericytes, Int. J. Biochem. Cell Biol.44 (2012) 1800–1812; https://doi.org/10.1016/j.biocel.2012.06.03110.1016/j.biocel.2012.06.031345511622750474Search in Google Scholar

35. S. L. Percival, S. McCarty, J. A. Hunt, E. J. Woods, The effects of pH on wound healing, biofilms, and antimicrobial efficacy, Wound Rep. Reg.22 (2014) 174–186; https://doi.org/10.1111/wrr.1212510.1111/wrr.1212524611980Search in Google Scholar

36. D. B. Friedman, D. L. Stauff, G. Pishchany, C. W. Whitwell, V. J. Torres and E. P. Skaar, Staphylococcus aureus redirects central metabolism to increase iron availability, PLoS Pathog.2 (2006) 0777–0789; https://doi.org/10.1371/journal.ppat.002008710.1371/journal.ppat.0020087155783216933993Search in Google Scholar

37. X. Chen, L. H. Peng, Y. H. Shan, N. Li, W. Wei, L. Yu, Q. M. Li, W. Q. Liang and J. Q. Gao, Astragaloside IV-loaded nanoparticle-enriched hydrogel induces wound healing and anti-scar activity through topical delivery, Int. J. Pharm.447 (2013) 171–181; https://doi.org/10.1016/j.ijpharm.2013.02.05410.1016/j.ijpharm.2013.02.05423500766Search in Google Scholar

38. V. Kant, A. Gopal, D. Kumar, A. Gopalkrishnan, N. N. Pathak, N. P. Kurade, S. K. Tandan and D. Kumar, Topical pluronic F-127 gel application enhances cutaneous wound healing in rats, Acta Histochem.116 (2014) 5–13; https://doi.org/10.1016/j.acthis.2013.04.01010.1016/j.acthis.2013.04.01023706531Search in Google Scholar

39. G. Soybir, C. Topuzlu, Ö. Odabaş, K. Dolay, A. Bilir and F. Köksoy, The effects of melatonin on angiogenesis and wound healing, Surg. Today. 33 (2003) 896–901; https://doi.org/10.1007/s00595-003-2621-310.1007/s00595-003-2621-314669079Search in Google Scholar

40. I. Garcia-Orue, G. Gainza, P. Garcia-Garcia, F. B. Gutierrez, J. J. Aguirre, R. M. Hernandez, A. Delgado and M. Igartua, Composite nanofibrous membranes of PLGA/Aloe vera containing lipid nanoparticles for wound dressing applications, Int. J. Pharm. (2019); https://doi.org/10.1016/j.ijpharm.2018.12.010.10.1016/j.ijpharm.2018.12.01030553008Search in Google Scholar

41. M. Ghodrati, M. R. Farahpour and H. Hamishehkar, Encapsulation of Peppermint essential oil in nanostructured lipid carriers: In-vitro antibacterial activity and accelerative effect on infected wound healing, Colloids Surfaces A Physicochem. Eng. Asp. (2019); https://doi.org/10.1016/j.colsurfa.2018.12.04310.1016/j.colsurfa.2018.12.043Search in Google Scholar

eISSN:
1846-9558
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Pharmacy, other