Open Access

Benefits of Therapeutic Drug Monitoring of First Line Antituberculosis Drugs


Cite

1. Gordon SV, Parish T. Microbe Profile: Mycobacterium tuberculosis: Humanity’s deadly microbial foe. Microbiology. 2018;164(4):437-439. Search in Google Scholar

2. World Health Organisation. Global Tuberculosis Report 2019. Geneva: WHO; 2020. Search in Google Scholar

3. Seung KJ, Keshavjee S, Rich ML. Multidrug-Resistant Tuberculosis and Extensively Drug-Resistant Tuberculosis. Cold Spring Harb Perspect Med. 2015;5(9):a017863. Search in Google Scholar

4. Porvaznik I, Mokry J, Solovic I. Drug resistance to anti-tuberculotics in children – three years status in Slovakia. Acta Medica Martiniana. 2013;13(3):18-22. Search in Google Scholar

5. Javadi MR, Shalviri G, Gholami K, Salamzadeh J, Maghooli G, Mirsaeedi SM. Adverse reactions of anti-tuberculosis drugs in hospitalized patients: incidence, severity and risk factors. Pharmacoepidemiol Drug Saf. 2007;16(10):1104-1110. Search in Google Scholar

6. Peloquin CA. Therapeutic drug monitoring in the treatment of tuberculosis. Drugs. 2002;62(15):2169–83. Search in Google Scholar

7. Mota L, Al-Efraij K, Campbell JR, Cook VJ, Marra F, Johnston J. Therapeutic drug monitoring in anti-tuberculosis treatment: a systematic review and meta-analysis. Int J Tuberc Lung Dis. 2016;20(6):819-826. Search in Google Scholar

8. Weiner M, Burman W, Vernon A, et al. Low isoniazid concentrations and outcome of tuberculosis treatment with once-weekly isoniazid and rifapentine. Am J Respir Crit Care Med. 2003; 167(10):1341-1347. Search in Google Scholar

9. D’Ambrosio L, Centis R, Sotgiu G, Pontali E, Spanevello A, Migliori GB. New anti-tuberculosis drugs and regimens: 2015 update. ERJ Open Res. 2015;1(1):00010-2015. Search in Google Scholar

10. Egelund EF, Alsultan A, Peloquin CA. Optimizing the clinical pharmacology of tuberculosis medications. Clin Pharmacol Ther. 2015;98(4):387-393. Search in Google Scholar

11. Definitions of TDM &CT [Internet]. [cited 2020 Mar 21]. Available from: https://www.iatdmct.org/about-us/about-association/about-definitions-tdm-ct.html Search in Google Scholar

12. Fakultná nemocnica s poliklinikou Nové Zámky [Internet]. [cited 2020 Jun 4]. Available from: https://www.nspnz.sk/odd-farma.html Search in Google Scholar

13. Spektrum monitorovaných liečiv na OKF FN Nitra a odporučené časové odbery - Fakultná nemocnica Nitra [Internet]. [cited 2020 Jun 4]. Available from: https://fnnitra.sk/ambulancie/ambulancia-klinickej-farmakologie/spektrum-monitorovanych-lieciv-na-okf-fn-nitra-a-odporucenecasove-odbery/ Search in Google Scholar

14. Dohal M, Porvaznik I, Kusnir P, Mokry J. Whole-Genome Sequencing in Relation to Resistance of Mycobacterium Tuberculosis. Acta Medica Martiniana. 2019;19(1):12–21. Search in Google Scholar

15. Reynolds J, Heysell SK. Understanding pharmacokinetics to improve tuberculosis treatment outcome. Expert Opin Drug Metab Toxicol. 2014;10(6):813-823. Search in Google Scholar

16. Ando T, Kage H, Matsumoto Y, Nagase T. Lower Dose of Ethambutol Reduce Ocular Toxicity Without Compromising Efficacy for Pulmonary Mycobacterium Avium Complex Disease. Am J Respir Crit Care Med. 2019;199:A2538. Search in Google Scholar

17. Forget EJ, Menzies D. Adverse reactions to first-line antituberculosis drugs. Expert Opin Drug Saf. 2006;5(2):231–249. Search in Google Scholar

18. Kuhlin J, Sturkenboom MGG, Ghimire S, Margineanu I, van den Elsen SHJ, Simbar N, et al. Mass spectrometry for therapeutic drug monitoring of anti-tuberculosis drugs. Clin Mass Spectrom. 2019;14:34-45. Search in Google Scholar

19. Raju KSR, Gundeti M, Malik MY, et al. Bioanalysis of antitubercular drugs using liquid chromatography. J Pharm Biomed Anal. 2017;134:295-309. Search in Google Scholar

20. Zuur MA, Bolhuis MS, Anthony R, et al. Current status and opportunities for therapeutic drug monitoring in the treatment of tuberculosis. Expert Opin Drug Metab Toxicol. 2016;12(5):509-521. Search in Google Scholar

21. Sotgiu G, Alffenaar JW, Centis R, et al. Therapeutic drug monitoring: how to improve drug dosage and patient safety in tuberculosis treatment. Int J Infect Dis. 2015;32:101-104. Search in Google Scholar

22. Park SI, Oh J, Jang K, et al. Pharmacokinetics of Second-Line Antituberculosis Drugs after Multiple Administrations in Healthy Volunteers. Antimicrob Agents Chemother. 2015;59(8):4429-4435. Search in Google Scholar

23. Hartkoorn RC, Chandler B, Owen A, et al. Differential drug susceptibility of intracellular and extracellular tuberculosis, and the impact of P-glycoprotein. Tuberculosis (Edinb). 2007;87(3):248-255 Search in Google Scholar

24. Alsultan A, Peloquin CA. Therapeutic drug monitoring in the treatment of tuberculosis: An update. Drugs. 2014;74(8):839–854. Search in Google Scholar

25. Verbeeck RK, Günther G, Kibuule D, Hunter C, Rennie TW. Optimizing treatment outcome of first-line anti-tuberculosis drugs: the role of therapeutic drug monitoring. Eur J Clin Pharmacol. 2016;72(8):905-916. Search in Google Scholar

26. WHO. Guidelines for treatment of tuberculosis [Internet]. [cited 2020 Feb 19]. Available from: https://www.who.int/tb/publications/2010/9789241547833/en/ Search in Google Scholar

27. Pyrazinamide. Tuberculosis. 2008;88(2):141-144. Search in Google Scholar

28. Ethambutol. Tuberculosis. 2008;88(2):102-105. Search in Google Scholar

29. Lin MY, Lin SJ, Chan LC, Lu YC. Impact of food and antacids on the pharmacokinetics of anti-tuberculosis drugs: systematic review and meta-analysis. Int J Tuberc Lung Dis. 2010;14(7):806-818. Search in Google Scholar

30. Klein DJ, Boukouvala S, McDonagh EM, et al. PharmGKB summary: isoniazid pathway, pharmacokinetics. Pharmacogenet Genomics. 2016;26(9):436-444. Search in Google Scholar

31. Zhou Y, Jiao Y, Wei YH, et al. Effects of pyridoxine on the intestinal absorption and pharmacokinetics of isoniazid in rats. Eur J Drug Metab Pharmacokinet. 2013;38(1):5-13. Search in Google Scholar

32. Holdiness MR. Clinical pharmacokinetics of the antituberculosis drugs. Clin Pharmacokinet. 1984;9(6):511-544. Search in Google Scholar

33. Unissa AN, Sukumar S, Hanna LE. The Role of N-Acetyl Transferases on Isoniazid Resistance from Mycobacterium tuberculosis and Human: An In Silico Approach. Tuberc Respir Dis (Seoul). 2017;80(3):255-264. Search in Google Scholar

34. Stott KE, Pertinez H, Sturkenboom MGG, et al. Pharmacokinetics of rifampicin in adult TB patients and healthy volunteers: a systematic review and meta-analysis. J Antimicrob Chemother. 2018;73(9):2305-2313. Search in Google Scholar

35. Niemi M, Backman JT, Fromm MF, Neuvonen PJ, Kivistö KT. Pharmacokinetic interactions with rifampicin : clinical relevance. Clin Pharmacokinet. 2003;42(9):819-850. Search in Google Scholar

36. Tostmann A, Mtabho CM, Semvua HH, et al. Pharmacokinetics of first-line tuberculosis drugs in Tanzanian patients. Antimicrob Agents Chemother. 2013;57(7):3208-3213. Search in Google Scholar

37. Chen J, Raymond K. Roles of rifampicin in drug-drug interactions: underlying molecular mechanisms involving the nuclear pregnane X receptor. Ann Clin Microbiol Antimicrob. 2006;5:3. Published 2006 Feb 15. Search in Google Scholar

38. Jönsson S, Davidse A, Wilkins J, et al. Population pharmacokinetics of ethambutol in South African tuberculosis patients. Antimicrob Agents Chemother. 2011;55(9):4230-4237. Search in Google Scholar

39. Peloquin CA, Bulpitt AE, Jaresko GS, Jelliffe RW, Childs JM, Nix DE. Pharmacokinetics of ethambutol under fasting conditions, with food, and with antacids. Antimicrob Agents Chemother. 1999;43(3):568-572. Search in Google Scholar

40. Peets EA, Sweeney WM, Place VA, Buyske DA. The absorption, excretion, and metabolic fate of ethambutol in man. Am Rev Respir Dis. 1965;91:51-58. Search in Google Scholar

41. Lee CS, Gambertoglio JG, Brater DC, Benet LZ. Kinetics of oral ethambutol in the normal subject. Clin Pharmacol Ther. 1977;22(5 Pt 1):615-621. Search in Google Scholar

42. Peloquin CA, Bulpitt AE, Jaresko GS, Jelliffe RW, James GT, Nix DE. Pharmacokinetics of pyrazinamide under fasting conditions, with food, and with antacids. Pharmacotherapy. 1998;18(6):1205-1211. Search in Google Scholar

43. Alghamdi WA, Al-Shaer MH, Peloquin CA. Protein Binding of First-Line Antituberculosis Drugs. Antimicrob Agents Chemother. 2018;62(7):e00641-18. Search in Google Scholar

44. Phuapradit P, Supmonchai K, Kaojarern S, Mokkhavesa C. The blood/cerebrospinal fluid partitioning of pyrazinamide: a study during the course of treatment of tuberculous meningitis. J Neurol Neurosurg Psychiatry. 1990;53(1):81-82. Search in Google Scholar

45. Conte JE Jr, Lin E, Zurlinden E. High-performance liquid chromatographic determination of pyrazinamide in human plasma, bronchoalveolar lavage fluid, and alveolar cells. J Chromatogr Sci. 2000;38(1):33-37. Search in Google Scholar

46. Ellard GA. Absorption, metabolism and excretion of pyrazinamide in man. Tubercle. 1969;50(2): 144-158. Search in Google Scholar

47. Lamont EA, Baughn AD. Impact of the host environment on the antitubercular action of pyrazinamide. EBioMedicine. 2019;49:374-380. Search in Google Scholar

48. Dooley KE, Tang T, Golub JE, Dorman SE, Cronin W. Impact of diabetes mellitus on treatment outcomes of patients with active tuberculosis. Am J Trop Med Hyg. 2009;80(4):634-639. Search in Google Scholar

49. Dostalek M, Akhlaghi F, Puzanovova M. Effect of diabetes mellitus on pharmacokinetic and pharmacodynamic properties of drugs. Clin Pharmacokinet. 2012;51(8):481-499. Search in Google Scholar

50. Walubo A. The role of cytochrome P450 in antiretroviral drug interactions. Expert Opin Drug Metab Toxicol. 2007;3(4):583-598. Search in Google Scholar

51. May M, Schindler C. Clinically and pharmacologically relevant interactions of antidiabetic drugs. Ther Adv Endocrinol Metab. 2016;7(2):69-83. Search in Google Scholar

52. Semvua HH, Kibiki GS, Kisanga ER, Boeree MJ, Burger DM, Aarnoutse R. Pharmacological interactions between rifampicin and antiretroviral drugs: challenges and research priorities for resource-limited settings. Ther Drug Monit. 2015;37(1):22-32. Search in Google Scholar

53. Patel P, Louie S. Drug Interactions in HIV. Protease and Integrase Inhibitors. In: Pai M, Kiser J, Gubbins P, Rodvold K (eds). Drug Interactions in Infectious Diseases: Antimicrobial Drug Interactions. Infectious Disease. Humana Press, Cham. 2018: 255–95. ISBN 978-3-319-72415-7. Search in Google Scholar

54. Ostermann M, Palchaudhuri P, Riding A, Begum P, Milburn HJ. Incidence of tuberculosis is high in chronic kidney disease patients in South East England and drug resistance common. Ren Fail. 2016;38(2):256-261. Search in Google Scholar

55. Hashimoto M, Minami T, Hamaguchi M, et al. Reactivation of latent tuberculosis infection induced by cabazitaxel in a patient with prostate cancer: A case report. Medicine (Baltimore). 2019; 98(51):e18436. Search in Google Scholar

eISSN:
1338-4139
Language:
English
Publication timeframe:
3 times per year
Journal Subjects:
Medicine, Clinical Medicine, Internal Medicine, Cardiology