Open Access

Analysis of Application of Gradient Concrete Models to Assess Concrete Cover Degradation Under Reinforcement Corrosion


Cite

Liu, Y. (1996). Modeling the Time-to-Corrosion Cracking of the Cover Concrete in Chloride Contaminated Reinforced Concrete Structures (PhD thesis, Virginia Polytechnic Institute and State University), Blacksburg, VA, United States. LiuY. 1996 Modeling the Time-to-Corrosion Cracking of the Cover Concrete in Chloride Contaminated Reinforced Concrete Structures PhD thesis, Virginia Polytechnic Institute and State University Blacksburg, VA, United States Search in Google Scholar

Bazant, Z. P. (1979). Physical model for steel corrosion in concrete sea structures—application. Journal of the Structural Division, ASCE, 105(6), 1155–1166. https://doi.org/10.1061/JSDEAG.0005169. BazantZ. P. 1979 Physical model for steel corrosion in concrete sea structures—application Journal of the Structural Division, ASCE 105 6 1155 1166 https://doi.org/10.1061/JSDEAG.0005169. Search in Google Scholar

Pantazopoulou, S. J., & Papoulia, K. D. (2001). Modeling Cover-Cracking due to Reinforcement Corrosion in RC Structures. Journal of Engineering Mechanics, 127(4), 342–351. https://doi.org/10.1061/(ASCE)0733-9399(2001)127:4(342) PantazopoulouS. J. PapouliaK. D. 2001 Modeling Cover-Cracking due to Reinforcement Corrosion in RC Structures Journal of Engineering Mechanics 127 4 342 351 https://doi.org/10.1061/(ASCE)0733-9399(2001)127:4(342) Search in Google Scholar

Jamali, A., Angst, U., Adey, B., & Elsener, B. (2013). Modeling of corrosion-induced concrete cover cracking: A critical analysis. Construction and Building Materials, 42, 225–237. https://doi.org/10.1016/j.conbuildmat.2013.01.019. JamaliA. AngstU. AdeyB. ElsenerB. 2013 Modeling of corrosion-induced concrete cover cracking: A critical analysis Construction and Building Materials 42 225 237 https://doi.org/10.1016/j.conbuildmat.2013.01.019. Search in Google Scholar

Martín-Pérez, B. (1999). Service Life Modelling of R.C. Highway Structures Exposed to Chlorides (PhD Thesis, University of Toronto), Toronto, Canada. Martín-PérezB. 1999 Service Life Modelling of R.C. Highway Structures Exposed to Chlorides PhD Thesis, University of Toronto Toronto, Canada Search in Google Scholar

Molina, F. J., Alonso, C., & Andrade, C. (1993). Cover cracking as a function of rebar corrosion: Part 2 - Numerical model. Materials and Structures, 26(9), 532–548. https://doi.org/10.1007/BF02472864. MolinaF. J. AlonsoC. AndradeC. 1993 Cover cracking as a function of rebar corrosion: Part 2 - Numerical model Materials and Structures 26 9 532 548 https://doi.org/10.1007/BF02472864. Search in Google Scholar

Ožbolt, Joško, Oršanic, F., Gojko, B., & Kušte, M. (2012). Modeling damage in concrete caused by corrosion of reinforcement: coupled 3D FE model. International Journal of Fracture, 178, 233–244. https://doi.org/10.1007/s10704-012-9774-3. OžboltJoško OršanicF. GojkoB. KušteM. 2012 Modeling damage in concrete caused by corrosion of reinforcement: coupled 3D FE model International Journal of Fracture 178 233 244 https://doi.org/10.1007/s10704-012-9774-3. Search in Google Scholar

Wieczorek, B., & Krykowski, T. (2017). Zastosowanie reguł mechaniki uszkodzeń do oceny wzrostu odkształceń korozyjnych w warstwie przejściowej (Application of damage mechanics rules to evaluate the growth of corrosive deformations in transition layer). Ochrona Przed Korozją, 60(1), 5–8. https://doi.org/10.15199/40.2017.1.1. WieczorekB. KrykowskiT. 2017 Zastosowanie reguł mechaniki uszkodzeń do oceny wzrostu odkształceń korozyjnych w warstwie przejściowej (Application of damage mechanics rules to evaluate the growth of corrosive deformations in transition layer) Ochrona Przed Korozją 60 1 5 8 https://doi.org/10.15199/40.2017.1.1. Search in Google Scholar

Krykowski, T., Jaśniok, T., Recha, F., & Karolak, M. (2020). A Cracking Model for Reinforced Concrete Cover, Taking Account of the Accumulation of Corrosion Products in the ITZ Layer, and Including Computational and Experimental Verification. Materials, 13(23), 5375. https://doi.org/10.3390/ma13235375. KrykowskiT. JaśniokT. RechaF. KarolakM. 2020 A Cracking Model for Reinforced Concrete Cover, Taking Account of the Accumulation of Corrosion Products in the ITZ Layer, and Including Computational and Experimental Verification Materials 13 23 5375 https://doi.org/10.3390/ma13235375. Search in Google Scholar

German, M., & Pamin, J. (2015). FEM simulations of cracking in RC beams due to corrosion progress. Archives of Civil and Mechanical Engineering. https://doi.org/10.1016/j.acme.2014.12.010. GermanM. PaminJ. 2015 FEM simulations of cracking in RC beams due to corrosion progress Archives of Civil and Mechanical Engineering https://doi.org/10.1016/j.acme.2014.12.010. Search in Google Scholar

Pluciński, P. (2008). Numeryczna analiza efektów mechanicznych korozji stali zbrojeniowej w betonie (Numerical analysis of mechanical effects of rebar corrosion in concrete structures) (PhD thesis, Cracow University of Technology). Poland, Kraków. PlucińskiP. 2008 Numeryczna analiza efektów mechanicznych korozji stali zbrojeniowej w betonie (Numerical analysis of mechanical effects of rebar corrosion in concrete structures) PhD thesis, Cracow University of Technology Poland, Kraków Search in Google Scholar

Cao, C., & Cheung, M. M. S. (2014). Non-uniform rust expansion for chloride-induced pitting corrosion in RC structures. Construction and Building Materials, 51, 75–81. https://doi.org/10.1016/j.conbuildmat.2013.10.042. CaoC. CheungM. M. S. 2014 Non-uniform rust expansion for chloride-induced pitting corrosion in RC structures Construction and Building Materials 51 75 81 https://doi.org/10.1016/j.conbuildmat.2013.10.042. Search in Google Scholar

Chauhan, A., & Sharma, U. K. (2021). Crack propagation in reinforced concrete exposed to non-uniform corrosion under real climate. Engineering Fracture Mechanics, 248, 107719. https://doi.org/10.1016/j.engfracmech.2021.107719. ChauhanA. SharmaU. K. 2021 Crack propagation in reinforced concrete exposed to non-uniform corrosion under real climate Engineering Fracture Mechanics 248 107719 https://doi.org/10.1016/j.engfracmech.2021.107719. Search in Google Scholar

Alfano, G., & Crisfield, M. A. (2001). Finite element interface models for the delamination analysis of laminated composites: Mechanical and computational issues. International Journal for Numerical Methods in Engineering, 50(7). https://doi.org/10.1002/nme.93. AlfanoG. CrisfieldM. A. 2001 Finite element interface models for the delamination analysis of laminated composites: Mechanical and computational issues International Journal for Numerical Methods in Engineering 50 7 https://doi.org/10.1002/nme.93. Search in Google Scholar

Lubliner, J., Oliver, J., Oller, S., & Oñate, E. (1989). A plastic-damage model for concrete. International Journal of Solids and Structures, 25(3), 299–326. https://doi.org/10.1016/0020-7683(89)90050-4. LublinerJ. OliverJ. OllerS. OñateE. 1989 A plastic-damage model for concrete International Journal of Solids and Structures 25 3 299 326 https://doi.org/10.1016/0020-7683(89)90050-4. Search in Google Scholar

Červenka, J., & Papanikolaou, V. K. (2008). Three dimensional combined fracture-plastic material model for concrete. International Journal of Plasticity, 24(12), 2192–2220. https://doi.org/10.1016/j.ijplas.2008.01.004. ČervenkaJ. PapanikolaouV. K. 2008 Three dimensional combined fracture-plastic material model for concrete International Journal of Plasticity 24 12 2192 2220 https://doi.org/10.1016/j.ijplas.2008.01.004. Search in Google Scholar

Dai, L., Long, D., & Wang, L. (2021). Meso-scale modeling of concrete cracking induced by 3D corrosion expansion of helical strands. Computers and Structures, 254, 106615. https://doi.org/10.1016/j.compstruc.2021.106615. DaiL. LongD. WangL. 2021 Meso-scale modeling of concrete cracking induced by 3D corrosion expansion of helical strands Computers and Structures 254 106615 https://doi.org/10.1016/j.compstruc.2021.106615. Search in Google Scholar

Zhang, Y., & Su, R. K. L. (2020). Corner cracking model for non-uniform corrosion-caused deterioration of concrete covers. Construction and Building Materials, 234, 117410. https://doi.org/10.1016/j.conbuildmat.2019.117410. ZhangY. SuR. K. L. 2020 Corner cracking model for non-uniform corrosion-caused deterioration of concrete covers Construction and Building Materials 234 117410 https://doi.org/10.1016/j.conbuildmat.2019.117410. Search in Google Scholar

Su, R. K. L., & Zhang, Y. (2019). A novel elastic-body-rotation model for concrete cover spalling caused by non-uniform corrosion of reinforcement. Construction and Building Materials, 213, 549–560. https://doi.org/10.1016/j.conbuildmat.2019.04.096. SuR. K. L. ZhangY. 2019 A novel elastic-body-rotation model for concrete cover spalling caused by non-uniform corrosion of reinforcement Construction and Building Materials 213 549 560 https://doi.org/10.1016/j.conbuildmat.2019.04.096. Search in Google Scholar

Baji, H. (2020). Stochastic modelling of concrete cover cracking considering spatio-temporal variation of corrosion. Cement and Concrete Research, 133, 106081. https://doi.org/10.1016/j.cemconres.2020.106081. BajiH. 2020 Stochastic modelling of concrete cover cracking considering spatio-temporal variation of corrosion Cement and Concrete Research 133 106081 https://doi.org/10.1016/j.cemconres.2020.106081. Search in Google Scholar

Yurkova, K., & Krykowski, T. (2022). Modelowanie powstawania produktów korozji zbrojenia i ich wpływu na uszkodzenie otuliny betonowej (Modeling of the formation of reinforcement corrosion products and their impact on damage of the concrete cover). Inżynieria i Budownictwo, 78(9–10), 410–413. YurkovaK. KrykowskiT. 2022 Modelowanie powstawania produktów korozji zbrojenia i ich wpływu na uszkodzenie otuliny betonowej (Modeling of the formation of reinforcement corrosion products and their impact on damage of the concrete cover) Inżynieria i Budownictwo 78 9–10 410 413 Search in Google Scholar

Seetharam, S. C., Laloy, E., Jivkov, A., Yu, L., Phung, Q. T., Pham, N. P., Kursten, B., & Druyts, F. (2019). A mesoscale framework for analysis of corrosion induced damage of concrete. Construction and Building Materials, 216, 347–361. https://doi.org/10.1016/j.conbuildmat.2019.04.252. SeetharamS. C. LaloyE. JivkovA. YuL. PhungQ. T. PhamN. P. KurstenB. DruytsF. 2019 A mesoscale framework for analysis of corrosion induced damage of concrete Construction and Building Materials 216 347 361 https://doi.org/10.1016/j.conbuildmat.2019.04.252. Search in Google Scholar

Šavija, B., Luković, M., Pacheco, J., & Schlangen, E. (2013). Cracking of the concrete cover due to reinforcement corrosion: A two-dimensional lattice model study. Construction and Building Materials, 44, 626–638. https://doi.org/10.1016/j.conbuildmat.2013.03.063. ŠavijaB. LukovićM. PachecoJ. SchlangenE. 2013 Cracking of the concrete cover due to reinforcement corrosion: A two-dimensional lattice model study Construction and Building Materials 44 626 638 https://doi.org/10.1016/j.conbuildmat.2013.03.063. Search in Google Scholar

Nguyen, T. T. H., Bary, B., & De Larrard, T. (2015). Coupled carbonation-rust formation-damage modeling and simulation of steel corrosion in 3D mesoscale reinforced concrete. Cement and Concrete Research, 74, 95–107. https://doi.org/10.1016/j.cemconres.2015.04.008. NguyenT. T. H. BaryB. De LarrardT. 2015 Coupled carbonation-rust formation-damage modeling and simulation of steel corrosion in 3D mesoscale reinforced concrete Cement and Concrete Research 74 95 107 https://doi.org/10.1016/j.cemconres.2015.04.008. Search in Google Scholar

Ožbolt, J., Balabanić, G., Periškić, G., & Kušter, M. (2010). Modelling the effect of damage on transport processes in concrete. Construction and Building Materials, 24(9), 1638–1648. https://doi.org/10.1016/j.conbuildmat.2010.02.028. OžboltJ. BalabanićG. PeriškićG. KušterM. 2010 Modelling the effect of damage on transport processes in concrete Construction and Building Materials 24 9 1638 1648 https://doi.org/10.1016/j.conbuildmat.2010.02.028. Search in Google Scholar

Guzmán, S., Gálvez, J. C., & Sancho, J. M. (2012). Modelling of corrosion-induced cover cracking in reinforced concrete by an embedded cohesive crack finite element. Engineering Fracture Mechanics, 93, 92–107. https://doi.org/10.1016/j.engfracmech.2012.06.010. GuzmánS. GálvezJ. C. SanchoJ. M. 2012 Modelling of corrosion-induced cover cracking in reinforced concrete by an embedded cohesive crack finite element Engineering Fracture Mechanics 93 92 107 https://doi.org/10.1016/j.engfracmech.2012.06.010. Search in Google Scholar

Guzmán, S., Gálvez, J. C., & Sancho, J. M. (2011). Cover cracking of reinforced concrete due to rebar corrosion induced by chloride penetration. Cement and Concrete Research, 41(8), 893–902. https://doi.org/10.1016/j.cemconres.2011.04.008. GuzmánS. GálvezJ. C. SanchoJ. M. 2011 Cover cracking of reinforced concrete due to rebar corrosion induced by chloride penetration Cement and Concrete Research 41 8 893 902 https://doi.org/10.1016/j.cemconres.2011.04.008. Search in Google Scholar

Jin, H., & Yu, S. (2022). Study on corrosion-induced cracks for the concrete with transverse cracks using an improved CDM-XFEM. Construction and Building Materials, 318, 126173. https://doi.org/10.1016/j.conbuildmat.2021.126173. JinH. YuS. 2022 Study on corrosion-induced cracks for the concrete with transverse cracks using an improved CDM-XFEM Construction and Building Materials 318 126173 https://doi.org/10.1016/j.conbuildmat.2021.126173. Search in Google Scholar

Zreid, I., & Kaliske, M. (2014). Regularization of microplane damage models using an implicit gradient enhancement. International Journal of Solids and Structures, 51(19–20). https://doi.org/10.1016/j.ijsolstr.2014.06.020. ZreidI. KaliskeM. 2014 Regularization of microplane damage models using an implicit gradient enhancement International Journal of Solids and Structures 51 19–20 https://doi.org/10.1016/j.ijsolstr.2014.06.020. Search in Google Scholar

Zreid, I., & Kaliske, M. (2018). A gradient enhanced plasticity–damage microplane model for concrete. Computational Mechanics, 62(5). https://doi.org/10.1007/s00466-018-1561-1. ZreidI. KaliskeM. 2018 A gradient enhanced plasticity–damage microplane model for concrete Computational Mechanics 62 5 https://doi.org/10.1007/s00466-018-1561-1. Search in Google Scholar

Bažant, Z. P., & Gambarova, P. G. (1984). Crack Shear in Concrete: Crack Band Microplane Model. Journal of Structural Engineering, 110(9). https://doi.org/10.1061/(asce)0733-9445(1984)110:9(2015). BažantZ. P. GambarovaP. G. 1984 Crack Shear in Concrete: Crack Band Microplane Model Journal of Structural Engineering 110 9 https://doi.org/10.1061/(asce)0733-9445(1984)110:9(2015). Search in Google Scholar

Bažant, Z. P., & Prat, P. C. (1988). Microplane Model for Brittle Plastic Material: I. Theory. Journal of Engineering https://doi.org/10.1061/(asce)0733-9399(1988)114:10(1672). BažantZ. P. PratP. C. 1988 Microplane Model for Brittle Plastic Material: I. Theory Journal of Engineering https://doi.org/10.1061/(asce)0733-9399(1988)114:10(1672). Search in Google Scholar

ANSYS Inc. (2023). Material Reference, Canonsburg, USA. ANSYS Inc. 2023 Material Reference Canonsburg, USA Search in Google Scholar

De Vree, J. H. P., Brekelmans, W. A. M., & van Gils, M. A. J. (1995). Comparison of nonlocal approaches in continuum damage mechanics. Computers & Structures, 55(4), 581–588. https://doi.org/10.1016/0045-7949(94)00501-S. De VreeJ. H. P. BrekelmansW. A. M. van GilsM. A. J. 1995 Comparison of nonlocal approaches in continuum damage mechanics Computers & Structures 55 4 581 588 https://doi.org/10.1016/0045-7949(94)00501-S. Search in Google Scholar

Pamin, J. (2004). Gradient-enhanced continuum models: formulation, discretization and application. Cracow University of Technology. PaminJ. 2004 Gradient-enhanced continuum models: formulation, discretization and application Cracow University of Technology Search in Google Scholar

Wosatko, A. (2021). Comparison of evolving gradient damage formulations with different activity functions. Archive of Applied Mechanics, 91(2), 597–627. https://doi.org/10.1007/s00419-021-01889-2. WosatkoA. 2021 Comparison of evolving gradient damage formulations with different activity functions Archive of Applied Mechanics 91 2 597 627 https://doi.org/10.1007/s00419-021-01889-2. Search in Google Scholar

The International Federation for Structural Concrete FIB. (2013). FIB Model Code for Concrete Structures 2010. In J. Walraven (Ed.), 2013 fédération internationale du béton/International Federation for Structural Concrete (fib). https://doi.org/10.1002/9783433604090. The International Federation for Structural Concrete FIB 2013 FIB Model Code for Concrete Structures 2010 In WalravenJ. (Ed.), 2013 fédération internationale du béton/International Federation for Structural Concrete (fib) https://doi.org/10.1002/9783433604090. Search in Google Scholar

Jiang, H., & Zhao, J. (2015). Calibration of the continuous surface cap model for concrete. Finite Elements in Analysis and Design, 97, 1–19. https://doi.org/10.1016/j.finel.2014.12.002. JiangH. ZhaoJ. 2015 Calibration of the continuous surface cap model for concrete Finite Elements in Analysis and Design 97 1 19 https://doi.org/10.1016/j.finel.2014.12.002. Search in Google Scholar

eISSN:
2720-6947
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Architecture and Design, Architecture, Architects, Buildings