Open Access

Photocatalytic Decolourization of Rhodamine B by Modified Photo-Fenton Process with Quasicrystals – Preliminary Research


Cite

M. Soylak, Y.E. Unsal, E. Yilmaz, M. Tuzen, (2011). Determination of rhodamine B in soft drink, waste water and lipstick samples after solid phase extraction. Food and Chemical Toxicology, 4, 1796–1799. https://doi.org/10.1016/J.FCT.2011.04.030. SoylakM. UnsalY.E. YilmazE. TuzenM. 2011 Determination of rhodamine B in soft drink, waste water and lipstick samples after solid phase extraction Food and Chemical Toxicology 4 1796 1799 https://doi.org/10.1016/J.FCT.2011.04.030. Search in Google Scholar

M. Alesso, G. Bondioli, M.C. Talío, M.O. Luconi, L.P. Fernández, (2012). Micelles mediated separation fluorimetric methodology for Rhodamine B determination in condiments, snacks and candies. Food Chem. 134, 513–517. https://doi.org/10.1016/J.FOODCHEM.2012.02.110. AlessoM. BondioliG. TalíoM.C. LuconiM.O. FernándezL.P. 2012 Micelles mediated separation fluorimetric methodology for Rhodamine B determination in condiments, snacks and candies Food Chem 134 513 517 https://doi.org/10.1016/J.FOODCHEM.2012.02.110. Search in Google Scholar

A.K. Al-Buriahi, A.A. Al-Gheethi, P. Senthil Kumar, R.M.S. Radin Mohamed, H. Yusof, A.F. Alshalif, N.A. Khalifa, (2022). Elimination of rhodamine B from textile wastewater using nanoparticle photocatalysts: A review for sustainable approaches. Chemosphere, 287, 132162. https://doi.org/10.1016/J.CHEMOSPHERE.2021.132162. Al-BuriahiA.K. Al-GheethiA.A. Senthil KumarP. Radin MohamedR.M.S. YusofH. AlshalifA.F. KhalifaN.A. 2022 Elimination of rhodamine B from textile wastewater using nanoparticle photocatalysts: A review for sustainable approaches Chemosphere 287 132162 https://doi.org/10.1016/J.CHEMOSPHERE.2021.132162. Search in Google Scholar

A.A. Al-Gheethi, Q.M. Azhar, P. Senthil Kumar, A.A. Yusuf, A.K. Al-Buriahi, R.M.S. Radin Mohamed, M.M. Al-shaibani, (2022). Sustainable approaches for removing Rhodamine B dye using agricultural waste adsorbents: A review, Chemosphere. 287, 132080. https://doi.org/10.1016/J.CHEMOSPHERE.2021.132080. Al-GheethiA.A. AzharQ.M. Senthil KumarP. YusufA.A. Al-BuriahiA.K. Radin MohamedR.M.S. Al-shaibaniM.M. 2022 Sustainable approaches for removing Rhodamine B dye using agricultural waste adsorbents: A review Chemosphere 287 132080 https://doi.org/10.1016/J.CHEMOSPHERE.2021.132080. Search in Google Scholar

H. Lee, S.H. Park, Y.K. Park, B.H. Kim, S.J. Kim, S.C. Jung, (2013). Rapid destruction of the rhodamine B using TiO2 photocatalyst in the liquid phase plasma. Chem Cent J., 7. https://doi.org/10.1186/1752-153X-7-156. LeeH. ParkS.H. ParkY.K. KimB.H. KimS.J. JungS.C. 2013 Rapid destruction of the rhodamine B using TiO2 photocatalyst in the liquid phase plasma Chem Cent J. 7 https://doi.org/10.1186/1752-153X-7-156. Search in Google Scholar

M.A. Hossain, M.S. Alam, (2012). Adsorption kinetics of Rhodamine-B on used black tea leaves. Iranian J Environ Health Sci Eng, 9, 1–7. https://doi.org/10.1186/1735-2746-9-2/TABLES/1. HossainM.A. AlamM.S. 2012 Adsorption kinetics of Rhodamine-B on used black tea leaves Iranian J Environ Health Sci Eng 9 1 7 https://doi.org/10.1186/1735-2746-9-2/TABLES/1. Search in Google Scholar

S. Arris, I. Brahmia, L. Bousbaa, (2012). Experimental Study of Removal of Rhodamine B by an Activated Cereal by Product. Energy Procedia, 18 1208–1219. https://doi.org/10.1016/J.EGYPRO.2012.05.136. ArrisS. BrahmiaI. BousbaaL. 2012 Experimental Study of Removal of Rhodamine B by an Activated Cereal by Product Energy Procedia 18 1208 1219 https://doi.org/10.1016/J.EGYPRO.2012.05.136. Search in Google Scholar

P.M. Rowiński, M.M. Chrzanowski, (2011). Influence of selected fluorescent dyes on small aquatic organisms. Acta Geophysica, 59, 91–109. https://doi.org/10.2478/S11600-010-0024-7/METRICS. RowińskiP.M. ChrzanowskiM.M. 2011 Influence of selected fluorescent dyes on small aquatic organisms Acta Geophysica 59 91 109 https://doi.org/10.2478/S11600-010-0024-7/METRICS. Search in Google Scholar

F.H. AlHamedi, M.A. Rauf, S.S. Ashraf, (2009). Degradation studies of Rhodamine B in the presence of UV/H2O2. Desalination, 239, 159–166. https://doi.org/10.1016/J.DESAL.2008.03.016. AlHamediF.H. RaufM.A. AshrafS.S. 2009 Degradation studies of Rhodamine B in the presence of UV/H2O2 Desalination 239 159 166 https://doi.org/10.1016/J.DESAL.2008.03.016. Search in Google Scholar

G. Ruppert, R. Bauer, G. Heisler, (1993). The photo-Fenton reaction — an effective photochemical waste-water treatment process. J Photochem Photobiol A Chem, 73, 75–78. https://doi.org/10.1016/1010-6030(93)80035-8. RuppertG. BauerR. HeislerG. 1993 The photo-Fenton reaction — an effective photochemical waste-water treatment process J Photochem Photobiol A Chem 73 75 78 https://doi.org/10.1016/1010-6030(93)80035-8. Search in Google Scholar

H.J.H. Fenton, (1894). LXXIII. – Oxidation of tartaric acid in presence of iron. Journal of the Chemical Society, Transactions, 65, 899–910. https://doi.org/10.1039/CT8946500899. FentonH.J.H. 1894 LXXIII. – Oxidation of tartaric acid in presence of iron Journal of the Chemical Society, Transactions 65 899 910 https://doi.org/10.1039/CT8946500899. Search in Google Scholar

L.G. Devi, M. Srinivas, M.L. ArunaKumari, (2016) Heterogeneous advanced photo-Fenton process using peroxymonosulfate and peroxydisulfate in presence of zero valent metallic iron: A comparative study with hydrogen peroxide photo-Fenton process. Journal of Water Process Engineering, 13, 117–126. https://doi.org/10.1016/J.JWPE.2016.08.004. DeviL.G. SrinivasM. ArunaKumariM.L. 2016 Heterogeneous advanced photo-Fenton process using peroxymonosulfate and peroxydisulfate in presence of zero valent metallic iron: A comparative study with hydrogen peroxide photo-Fenton process Journal of Water Process Engineering 13 117 126 https://doi.org/10.1016/J.JWPE.2016.08.004. Search in Google Scholar

K. Barbusiński, J. Majewski, (2003). Discoloration of Azo Dye Acid Red 18 by Fenton Reagent in the Presence of Iron Powder. Pol J Environ Stud. 12, 151–155. http://www.pjoes.com/Discoloration-of-Azo-Dye-Acid-Red-18-by-Fenton-r-nReagent-in-the-Presence-of-Iron,87538,0,2.html (accessed May 7, 2023). BarbusińskiK. MajewskiJ. 2003 Discoloration of Azo Dye Acid Red 18 by Fenton Reagent in the Presence of Iron Powder Pol J Environ Stud. 12 151 155 http://www.pjoes.com/Discoloration-of-Azo-Dye-Acid-Red-18-by-Fenton-r-nReagent-in-the-Presence-of-Iron,87538,0,2.html (accessed May 7, 2023). Search in Google Scholar

K. Barbusiński, (2005), The modified Fenton process for decolorization of dye wastewater. Pol J Environ Stud., 14, 281–285. BarbusińskiK. 2005 The modified Fenton process for decolorization of dye wastewater Pol J Environ Stud. 14 281 285 Search in Google Scholar

A. Radoń, S. Łoński, T. Warski, R. Babilas, T. Tański, M. Dudziak, D. Łukowiec, (2019). Catalytic activity of non-spherical shaped magnetite nanoparticles in degradation of Sudan I, Rhodamine B and Methylene Blue dyes. Appl Surf Sci., 487, 1018–1025. https://doi.org/10.1016/J.APSUSC.2019.05.091. RadońA. ŁońskiS. WarskiT. BabilasR. TańskiT. DudziakM. ŁukowiecD. 2019 Catalytic activity of non-spherical shaped magnetite nanoparticles in degradation of Sudan I, Rhodamine B and Methylene Blue dyes Appl Surf Sci. 487 1018 1025 https://doi.org/10.1016/J.APSUSC.2019.05.091. Search in Google Scholar

A. Radoń, S. Łoński, M. Kądziołka-Gaweł, P. Gębara, M. Lis, D. Łukowiec, R. Babilas, (2020). Influence of magnetite nanoparticles surface dissolution, stabilization and functionalization by malonic acid on the catalytic activity, magnetic and electrical properties. Colloids Surf A Physicochem Eng Asp, 607, 125446. https://doi.org/10.1016/J.COLSURFA.2020.125446. RadońA. ŁońskiS. Kądziołka-GawełM. GębaraP. LisM. ŁukowiecD. BabilasR. 2020 Influence of magnetite nanoparticles surface dissolution, stabilization and functionalization by malonic acid on the catalytic activity, magnetic and electrical properties Colloids Surf A Physicochem Eng Asp 607 125446 https://doi.org/10.1016/J.COLSURFA.2020.125446. Search in Google Scholar

Z. Jia, J. Kang, W.C. Zhang, W.M. Wang, C. Yang, H. Sun, D. Habibi, L.C. Zhang, (2017). Surface ageing behaviour of Fe-based amorphous alloys as catalysts during heterogeneous photo Fenton-like process for water treatment. Appl Catal B. 204, 537–547. https://doi.org/10.1016/J.APCATB.2016.12.001. JiaZ. KangJ. ZhangW.C. WangW.M. YangC. SunH. HabibiD. ZhangL.C. 2017 Surface ageing behaviour of Fe-based amorphous alloys as catalysts during heterogeneous photo Fenton-like process for water treatment Appl Catal B 204 537 547 https://doi.org/10.1016/J.APCATB.2016.12.001. Search in Google Scholar

W. Łoński, M. Spilka, M. Kądziołka-Gaweł, P. Gębara, A. Radoń, T. Warski, S. Łoński, K. Barbusiński, K. Młynarek-Żak, R. Babilas, (2023). Microstructure, magnetic properties, corrosion resistance and catalytic activity of dual-phase AlCoNiFeTi and AlCoNiFeTiSi high entropy alloys. J Alloys Compd, 934, 167827. https://doi.org/10.1016/J.JALLCOM.2022.167827. ŁońskiW. SpilkaM. Kądziołka-GawełM. GębaraP. RadońA. WarskiT. ŁońskiS. BarbusińskiK. Młynarek-ŻakK. BabilasR. 2023 Microstructure, magnetic properties, corrosion resistance and catalytic activity of dual-phase AlCoNiFeTi and AlCoNiFeTiSi high entropy alloys J Alloys Compd 934 167827 https://doi.org/10.1016/J.JALLCOM.2022.167827. Search in Google Scholar

V.N. Balbyshev, D.J. King, A.N. Khramov, L.S. Kasten, M.S. Donley, (2004). Investigation of quaternary Al-based quasicrystal thin films for corrosion protection. Thin Solid Films, 447–448, 558–563. https://doi.org/10.1016/J.TSF.2003.07.026. BalbyshevV.N. KingD.J. KhramovA.N. KastenL.S. DonleyM.S. 2004 Investigation of quaternary Al-based quasicrystal thin films for corrosion protection Thin Solid Films 447–448 558 563 https://doi.org/10.1016/J.TSF.2003.07.026. Search in Google Scholar

Sodium percarbonate as an agent for effective treatment of industrial wastewater, (n.d.). https://www.researchgate.net/publication/291155615_Sodium_percarbonate_as_an_agent_for_effective_treatment_of_industrial_wastewater (accessed May 7, 2023). Sodium percarbonate as an agent for effective treatment of industrial wastewater (n.d.). https://www.researchgate.net/publication/291155615_Sodium_percarbonate_as_an_agent_for_effective_treatment_of_industrial_wastewater (accessed May 7, 2023). Search in Google Scholar

B. Pieczykolan, I. Płonka, K. Barbusiński, (2016). Discoloration of dye wastewater by modified UV-Fenton process with sodium percarbonate, Architecture, Civil Engineering, Environment, 9(4). https://doi.org/10.21307/acee-2016-060. PieczykolanB. PłonkaI. BarbusińskiK. 2016 Discoloration of dye wastewater by modified UV-Fenton process with sodium percarbonate Architecture, Civil Engineering, Environment 9 4 https://doi.org/10.21307/acee-2016-060. Search in Google Scholar

R. Bauer, H. Fallmann, (1997). The Photo-Fenton oxidation – A cheap and efficient wastewater treatment method. Research on Chemical Intermediates, 23, 341–354. https://doi.org/10.1163/156856797X00565/METRIC. BauerR. FallmannH. 1997 The Photo-Fenton oxidation – A cheap and efficient wastewater treatment method Research on Chemical Intermediates 23 341 354 https://doi.org/10.1163/156856797X00565/METRIC. Search in Google Scholar

R. Babilas, A. Bajorek, M. Spilka, A. Radoń, W. Łoński, (2020). Structure and corrosion resistance of Al–Cu–Fe alloys. Progress in Natural Science: Materials International, 30, 393–401. https://doi.org/10.1016/J.PNSC.2020.06.002. BabilasR. BajorekA. SpilkaM. RadońA. ŁońskiW. 2020 Structure and corrosion resistance of Al–Cu–Fe alloys Progress in Natural Science: Materials International 30 393 401 https://doi.org/10.1016/J.PNSC.2020.06.002. Search in Google Scholar

D. V. Louzguine-Luzgin, A. Inoue, (2008). Formation and properties of quasicrystals. Annu Rev Mater Res, 38, 403–423. https://doi.org/10.1146/ANNUREV.MATSCI.38.060407.130318. Louzguine-LuzginD. V. InoueA. 2008 Formation and properties of quasicrystals Annu Rev Mater Res 38 403 423 https://doi.org/10.1146/ANNUREV.MATSCI.38.060407.130318. Search in Google Scholar

L. Lityńska-Dobrzyńska, M. Mitka, A. Góral, K. Stan-Głowińska, J. Dutkiewicz, (2016). Microstructure and mechanical properties of aluminium matrix composites reinforced by Al62Cu25.5Fe12.5 melt spun ribbon. Mater Charact, 117, 127–133. https://doi.org/10.1016/J.MATCHAR.2016.04.025. Lityńska-DobrzyńskaL. MitkaM. GóralA. Stan-GłowińskaK. DutkiewiczJ. 2016 Microstructure and mechanical properties of aluminium matrix composites reinforced by Al62Cu25.5Fe12.5 melt spun ribbon Mater Charact 117 127 133 https://doi.org/10.1016/J.MATCHAR.2016.04.025. Search in Google Scholar

K. Młynarek-Żak, W. Pakieła, D. Łukowiec, A. Bajorek, P. Gębara, A. Szakál, I. Dhiman, R. Babilas, (2022). Structure and selected properties of Al–Cr–Fe alloys with the presence of structurally complex alloy phases. Scientific Reports, 12, 1–12. https://doi.org/10.1038/s41598-022-17870-0. Młynarek-ŻakK. PakiełaW. ŁukowiecD. BajorekA. GębaraP. SzakálA. DhimanI. BabilasR. 2022 Structure and selected properties of Al–Cr–Fe alloys with the presence of structurally complex alloy phases Scientific Reports 12 1 12 https://doi.org/10.1038/s41598-022-17870-0. Search in Google Scholar

R. Babilas, K. Młynarek, W. Łoński, D. Łukowiec, M. Kadziołka-Gaweł, T. Czeppe, L. Temleitner, (2020). Structural Characterization of Al65Cu20Fe15 Melt-Spun Alloy by X-ray, Neutron Diffraction, High-Resolution Electron Microscopy and Mössbauer Spectroscopy. Materials 14, 54. https://doi.org/10.3390/MA14010054. BabilasR. MłynarekK. ŁońskiW. ŁukowiecD. Kadziołka-GawełM. CzeppeT. TemleitnerL. 2020 Structural Characterization of Al65Cu20Fe15 Melt-Spun Alloy by X-ray, Neutron Diffraction, High-Resolution Electron Microscopy and Mössbauer Spectroscopy Materials 14 54 https://doi.org/10.3390/MA14010054. Search in Google Scholar

Q. Wang, Y. Yang, S. Ma, J. Wu, T. Yao, (2020). Preparation of Fe3O4@Prussian blue core/shell composites for enhanced photo-Fenton degradation of rhodamine B. Colloids Surf A Physicochem Eng Asp, 606, 125416. https://doi.org/10.1016/J.COLSURFA.2020.125416. WangQ. YangY. MaS. WuJ. YaoT. 2020 Preparation of Fe3O4@Prussian blue core/shell composites for enhanced photo-Fenton degradation of rhodamine B Colloids Surf A Physicochem Eng Asp 606 125416 https://doi.org/10.1016/J.COLSURFA.2020.125416. Search in Google Scholar

J. Zhang, M. Yan, G. Sun, X. Li, B. Hao, K. Liu, (2022). Mg–Fe–Al–O spinel: Preparation and application as a heterogeneous photo-Fenton catalyst for degrading Rhodamine B. Chemosphere, 304, 135318. https://doi.org/10.1016/J.CHEMOSPHERE.2022.135318. ZhangJ. YanM. SunG. LiX. HaoB. LiuK. 2022 Mg–Fe–Al–O spinel: Preparation and application as a heterogeneous photo-Fenton catalyst for degrading Rhodamine B Chemosphere 304 135318 https://doi.org/10.1016/J.CHEMOSPHERE.2022.135318. Search in Google Scholar

F. Chen, S. Xie, X. Huang, X. Qiu, (2017). Ionothermal synthesis of Fe3O4 magnetic nanoparticles as efficient heterogeneous Fenton-like catalysts for degradation of organic pollutants with H2O2. J Hazard Mater, 322, 152–162. ChenF. XieS. HuangX. QiuX. 2017 Ionothermal synthesis of Fe3O4 magnetic nanoparticles as efficient heterogeneous Fenton-like catalysts for degradation of organic pollutants with H2O2 J Hazard Mater 322 152 162 Search in Google Scholar

eISSN:
2720-6947
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Architecture and Design, Architecture, Architects, Buildings