Open Access

Theoretical Models of PV-EC Windows Based on the Architectural Analysis of PV-EC Technologies


Cite

Carlucci F. (2021). A Review of Smart and Responsive Building Technologies and their Classifications. Future Cities and Environment, 7(1), p.10. doi: 10.5334/fce.123. Carlucci F. 2021 A Review of Smart and Responsive Building Technologies and their Classifications Future Cities and Environment 7 1 10 doi: 10.5334/fce.123 Open DOISearch in Google Scholar

Marchwiński J. (2021). Evaluation of PV Powered Switchable Glazing Technologies in terms of their Suitability for Office Windows in Moderate Climates, Journal of Green Building 6(4), 81–110. doi: 10.3992/jgb.16.4.81. Marchwiński J. 2021 Evaluation of PV Powered Switchable Glazing Technologies in terms of their Suitability for Office Windows in Moderate Climates Journal of Green Building 6 4 81 110 doi: 10.3992/jgb.16.4.81 Open DOISearch in Google Scholar

Kim J-H., Hong J., Han S.-H. (2021). Optimized Physical Properties of Electrochromic Smart Windows to Reduce Cooling and Heating Loads of Office Buildings. Sustainability 13(4), 1815. doi: 10. J.3390/su13041815. Kim J-H. Hong J. Han S.-H. 2021 Optimized Physical Properties of Electrochromic Smart Windows to Reduce Cooling and Heating Loads of Office Buildings Sustainability 13 4 1815 doi: 10. J.3390/su13041815 Open DOISearch in Google Scholar

Marchwiński J. (2021). Study of electrochromic (EC) and gasochromic (GC) glazing for buildings in aspect of energy efficiency. Architecture Civil Engineering Environment 14(3), 27–38. doi: 10.21307/ACEE-2021-020. Marchwiński J. 2021 Study of electrochromic (EC) and gasochromic (GC) glazing for buildings in aspect of energy efficiency Architecture Civil Engineering Environment 14 3 27 38 doi: 10.21307/ACEE-2021-020 Open DOISearch in Google Scholar

Ghosh, A., & Norton, B. (2018). Advances in switchable and highly insulating autonomous (self-powered) glazing systems for adaptive low energy buildings. Renewable Energy 126, 1003–1031. doi: org/10.1016/j.renene.2018.04.038. Ghosh A. Norton B. 2018 Advances in switchable and highly insulating autonomous (self-powered) glazing systems for adaptive low energy buildings Renewable Energy 126 1003 1031 doi:org/10.1016/j.renene.2018.04.038 10.1016/j.renene.2018.04.038 Search in Google Scholar

Deb, S.K. , Se-Hee L., Tracy, C.E., Pitts, J.R., Gregg, B.A., & Branz, H.M. (2001). Stand-alone photovoltaic-powered electrochromic smart window. Electrochimica Acta 46, 2125–2130. doi: 10.1016/S0013-4686(01)00390-5. Deb S.K. Se-Hee L. Tracy C.E. Pitts J.R. Gregg B.A. Branz H.M. 2001 Stand-alone photovoltaic-powered electrochromic smart window Electrochimica Acta 46 2125 2130 doi: 10.1016/S0013-4686(01)00390-5 Open DOISearch in Google Scholar

Lee-May, H., Chen-Pang, K., Chih-Wei, H., Cheng-Yu, P., & Han-Chang L. (2012). Tunable photovoltaic electrochromic device and module. Solar Energy Materials & Solar Cells 107, 390–395. doi: 10.1016/j.solmat.2012.07.021 Lee-May H. Chen-Pang K. Chih-Wei H. Cheng-Yu P. Han-Chang L. 2012 Tunable photovoltaic electrochromic device and module Solar Energy Materials & Solar Cells 107 390 395 doi: 10.1016/j.solmat.2012.07.021 Open DOISearch in Google Scholar

Leftheriotis, G., Syrrokostas, G., & Yianoulis, P. (2013). Photocoloration efficiency and stability of photoelectrochromic devices. Solid State Ionics 231, 30–36. doi: 10.1016/j.ssi.2012.10.024 Leftheriotis G. Syrrokostas G. Yianoulis P. 2013 Photocoloration efficiency and stability of photoelectrochromic devices Solid State Ionics 231 30 36 doi: 10.1016/j.ssi.2012.10.024 Open DOISearch in Google Scholar

Lee-May, H., Chih-Wei, H., Han-Chang, L., Chih-Yu, H., Chun-Heng, Ch.,& Kuo-Chuan, H. (2012). Photovoltaic electrochromic device for solar cell module and self-powered smart glass applications. Solar Energy Materials & Solar Cells 99, 154–159. doi: 10.1016/j.solmat.2011.03.036 Lee-May H. Chih-Wei H. Han-Chang L. Chih-Yu H. Chun-Heng Ch. Kuo-Chuan H. 2012 Photovoltaic electrochromic device for solar cell module and self-powered smart glass applications Solar Energy Materials & Solar Cells 99 154 159 doi: 10.1016/j.solmat.2011.03.036 Open DOISearch in Google Scholar

Sibilio S., Rosato A., Scorpio M., Iuliano G., Ciampi G., Vanoli G.P.& de Rossi F. (2016). A Review of Electrochromic Windows for Residential Applications. International Journal Of Heat And Technology, 34(2), 481–488. doi:10.18280/ijht.34S241. Sibilio S. Rosato A. Scorpio M. Iuliano G. Ciampi G. Vanoli G.P. de Rossi F. 2016 A Review of Electrochromic Windows for Residential Applications International Journal Of Heat And Technology 34 2 481 488 doi:10.18280/ijht.34S241 Open DOISearch in Google Scholar

Georg A. (2008). Switchable windows with tungsten oxide. Vacuum 82(7), 730-735. doi: 10.1016/j.vacuum.2007.10.020. Georg A. 2008 Switchable windows with tungsten oxide Vacuum 82 7 730 735 doi: 10.1016/j.vacuum.2007.10.020 Open DOISearch in Google Scholar

Baetens R., Jelle B.P. & Gustavsen A. (2010). Properties, Requirements and Possibilities of SmartWindows for Dynamic Daylight and Solar EnergyControl in Buildings: State-of-the-Art. Solar Energy Materials and Solar Cells, 94(2), 87–105. doi:10.1016/j.solmat.2009.08.021. Baetens R. Jelle B.P. Gustavsen A. 2010 Properties, Requirements and Possibilities of SmartWindows for Dynamic Daylight and Solar EnergyControl in Buildings: State-of-the-Art Solar Energy Materials and Solar Cells 94 2 87 105 doi:10.1016/j.solmat.2009.08.021 Open DOISearch in Google Scholar

Cannavale, A., Eperon, G.E., Cossari, P., Abate, A., Snaith, H.J., & Gigli, G. (2015). Perovskite photo-voltachromic cells for building integration. Energy & Environmental Science 8, 1578–1584. doi: 10.1039/C5EE00896D. doi: 10.1016/j.egypro.2013.05.033. Cannavale A. Eperon G.E. Cossari P. Abate A. Snaith H.J. Gigli G. 2015 Perovskite photo-voltachromic cells for building integration Energy & Environmental Science 8 1578 1584 doi: 10.1039/C5EE00896D doi: 10.1016/j.egypro.2013.05.033 Open DOISearch in Google Scholar

Blakers, A., Zin, N., McIntosh, K. R., & Fong K. (2013). High Efficiency Silicon Solar Cells. Energy Procedia, 33, 1–10. doi: 10.1016/j.egypro.2013.05.033. Blakers A. Zin N. McIntosh K. R. Fong K. 2013 High Efficiency Silicon Solar Cells Energy Procedia 33 1 10 doi: 10.1016/j.egypro.2013.05.033 Open DOISearch in Google Scholar

Kibria, M. T., Ahammed, A., Sony, S. M., Hossain, F., & Shams-Ul-Islam. (2015). A Review: Comparative studies on different generation solar cells technology. In 5th International Conference on Environmental Aspects of Bangladesh, 51–53. Kibria M. T. Ahammed A. Sony S. M. Hossain F. Shams-Ul-Islam 2015 A Review: Comparative studies on different generation solar cells technology In 5th International Conference on Environmental Aspects of Bangladesh 51 53 Search in Google Scholar

Sun, Y., Shanks, K., Baig, H., Zhang, W., Hao, X., Li, Y., He, B., Wilson, R., Liu, H., Sundaram, S., et al. (2018). Integrated semi-transparent cadmium telluride photovoltaic glazing into windows: Energy and daylight performance for different architecture design. Applied Energy, 231, 972–84. doi: 10.1016/j.apenergy.2018.09.133. Sun Y. Shanks K. Baig H. Zhang W. Hao X. Li Y. He B. Wilson R. Liu H. Sundaram S. 2018 Integrated semi-transparent cadmium telluride photovoltaic glazing into windows: Energy and daylight performance for different architecture design Applied Energy 231 972 84 doi: 10.1016/j.apenergy.2018.09.133 Open DOISearch in Google Scholar

Prasad, S. V. D., Krishnanaik, V., & Babu, K. R. (2013). Analysis of Organic Photovoltaic Cell. International Journal of Science and Modern Engineering, 1(9), 20–23. Prasad S. V. D. Krishnanaik V. Babu K. R. 2013 Analysis of Organic Photovoltaic Cell International Journal of Science and Modern Engineering 1 9 20 23 Search in Google Scholar

Ritter, A. (2007). Smart materials in architecture, interior architecture and design. Birkhauser. Ritter A. 2007 Smart materials in architecture, interior architecture and design Birkhauser Search in Google Scholar

Hu, Y., Chu, Y., Wang, Q., et al. (2019). Standardizing Perovskite Solar Modules beyond Cells. Joule, 3(9), 2076–2085. doi:10.1016/j.joule.2019.08.015. Hu Y. Chu Y. Wang Q. 2019 Standardizing Perovskite Solar Modules beyond Cells Joule 3 9 2076 2085 doi:10.1016/j.joule.2019.08.015 Open DOISearch in Google Scholar

Sarniak, M.T. (2008). Podstawy fotowoltaiki (Fundamentals of photovoltaics). Warszawa: OWPW. Sarniak M.T. 2008 Podstawy fotowoltaiki (Fundamentals of photovoltaics). Warszawa OWPW Search in Google Scholar

Jasim, K.E. (2011). Dye Sentized Solar Cells – Working Principles. Challenges and Opportunities, Solar Cells –Dye Sensitized Devices, Prof. Leonid Kosyachenko [Ed.] Intech. Jasim K.E. 2011 Dye Sentized Solar Cells – Working Principles. Challenges and Opportunities, Solar Cells –Dye Sensitized Devices, Prof. Leonid Kosyachenko [Ed.] Intech Search in Google Scholar

Brzezicki M. (2021). A Systematic Review of the most Recent Concepts in Smart Windows Technologies with a Focus on Electrochromics. Sustainability, 13(17), 9604. doi: 10.3390/su13179604 Brzezicki M. 2021 A Systematic Review of the most Recent Concepts in Smart Windows Technologies with a Focus on Electrochromics Sustainability 13 17 9604 doi: 10.3390/su13179604 Open DOISearch in Google Scholar

Nogueira, V.C., Longo,C., Nogueira, A.F., Oviedo, M.A.S., & De Paol M.A. (2006). Solid-state dye-sensitized solar cell: improved performance and stability using a plasticized polymer electrolyte. J. Photochem. Photobiol. A: Chem. 181, 226–232. doi:10.1016/j.jphotochem.2005.11.028. Nogueira V.C. Longo C. Nogueira A.F. Oviedo M.A.S. De Paol M.A. 2006 Solid-state dye-sensitized solar cell: improved performance and stability using a plasticized polymer electrolyte J. Photochem. Photobiol. A: Chem. 181 226 232 doi:10.1016/j.jphotochem.2005.11.028 Open DOISearch in Google Scholar

Hu, C.W., Lee, K.M., Chen, K.C., Chang, L.C.,Shen, K.Y., Lai, S.C., Kuo, T.H., Hsu, C.Y., Huang, K.M., Vittal, R.,90 & Ho, K.C. (2012). High contrast all-solid-state electrochromic device with 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO), heptyl viologen, and succinonitrile. Solar Energy Materials and Solar Cells 99, 135–140. doi:10.1016/j.solmat.2011.05.021. Hu C.W. Lee K.M. Chen K.C. Chang L.C. Shen K.Y. Lai S.C. Kuo T.H. Hsu C.Y. Huang K.M. Vittal R. Ho K.C. 2012 High contrast all-solid-state electrochromic device with 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO), heptyl viologen, and succinonitrile Solar Energy Materials and Solar Cells 99 135 140 doi:10.1016/j.solmat.2011.05.021 Open DOISearch in Google Scholar

Grobe L.O., Terwilliger M., Wittkopf S. (2020). Designing the colour, pattern, and specularity of building integrated photovoltaics. Conference: Technology and Innovation 2020: Smart buildings, smart cities., Izmir, Turkey. doi: 10.5281/zenodo.4049445. Grobe L.O. Terwilliger M. Wittkopf S. 2020 Designing the colour, pattern, and specularity of building integrated photovoltaics Conference: Technology and Innovation 2020: Smart buildings, smart cities. Izmir, Turkey doi: 10.5281/zenodo.4049445 Open DOISearch in Google Scholar

Muszyńska-Łanowy M. (2011). Fotowoltaika w kolorze (Color photovoltaics). Świat Szkła 4. https://www.swiat-szkla.pl/kontakt/4469-fotowoltaika-w-kolorze.html [2022-01-15] Muszyńska-Łanowy M. 2011 Fotowoltaika w kolorze (Color photovoltaics). Świat Szkła 4 https://www.swiat-szkla.pl/kontakt/4469-fotowoltaika-w-kolorze.html [2022-01-15] Search in Google Scholar

Li Z., Ma T., Yang X , Lu L., Wang R., Transparent and Colored Solar Photovoltaics for Building Integration. Solar RRL 5(3). doi: 10.1002/solr.202000614. Li Z. Ma T. Yang X. Lu L. Wang R. Transparent and Colored Solar Photovoltaics for Building Integration Solar RRL 5 3 doi: 10.1002/solr.202000614 Open DOISearch in Google Scholar

Marchwiński J. (2014). Architectural Evaluation of Switchable Glazing Technologies as Sun Protection Measure. Energy Procedia 57, 1677–1686. doi:10.1016/j.egypro.2014.10.158 Marchwiński J. 2014 Architectural Evaluation of Switchable Glazing Technologies as Sun Protection Measure Energy Procedia 57 1677 1686 doi:10.1016/j.egypro.2014.10.158 Open DOISearch in Google Scholar

Deb, S.K. (2000). Photovoltaic-Integrated Electrochromic Device for Smart-Window Applications. World Renewable Energy Congress VI Brighton, U.K. July 1-7, 2000. doi: 10.1016/B978-008043865-8/50583-3 Deb S.K. 2000 Photovoltaic-Integrated Electrochromic Device for Smart-Window Applications World Renewable Energy Congress VI Brighton, U.K. July 1-7, 2000 doi: 10.1016/B978-008043865-8/50583-3 Open DOISearch in Google Scholar

eISSN:
2720-6947
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Architecture and Design, Architecture, Architects, Buildings