Cite

1. West ER, Shea LD, Woodruff TK. Engineering the follicle microenvironment. Semin Reprod Med. 2007;25(4):287–99; DOI:10.1055/S-2007-980222.Search in Google Scholar

2. Dumesic DA, Meldrum DR, Katz-Jaffe MG, Krisher RL, Schoolcraft WB. Oocyte environment: follicular fluid and cumulus cells are critical for oocyte health. Fertil Steril. 2015;103(2):303–16; DOI:10.1016/j. fertnstert.2014.11.015.Search in Google Scholar

3. Richards JAS. Theca cells. Encycl Reprod. 2018;14–20; DOI:10.1016/B978-0-12-801238-3.64624-X.Search in Google Scholar

4. De Matos DG, Miller K, Scott R, Tran CA, Kagan D, Nataraja SG, Clark A, Palmer S. Leukemia inhibitory factor induces cumulus expansion in immature human and mouse oocytes and improves mouse two-cell rate and delivery rates when it is present during mouse in vitro oocyte maturation. Fertil Steril. 2008;90(6):2367–75; DOI:10.1016/J. FERTNSTERT.2007.10.061.Search in Google Scholar

5. Urs DBS, Wu WH, Komrskova K, Postlerova P, Lin YF, Tzeng CR, Kao SH. Mitochondrial function in modulating human granulosa cell steroidogenesis and female fertility. Int J Mol Sci. 2020;21(10); DOI:10.3390/IJMS21103592.Search in Google Scholar

6. Cole TJ, Short KL, Hooper SB. The science of steroids. Semin Fetal Neonatal Med. 2019;24(3):170–5; DOI:10.1016/J.SINY.2019.05.005.Search in Google Scholar

7. Liu T, Qu J, Tian M, Yang R, Song X, Li R, Yan J, Qiao J. Lipid metabolic process involved in oocyte maturation during folliculogenesis. Front Cell Dev Biol. 2022;10; DOI:10.3389/FCELL.2022.806890.Search in Google Scholar

8. Ferraretti AP, La Marca A, Fauser BCJM, Tarlatzis B, Nargund G, Gianaroli L. ESHRE consensus on the definition of “poor response” to ovarian stimulation for in vitro fertilization: the Bologna criteria. Hum Reprod. 2011;26(7):1616–24; DOI:10.1093/humrep/der092.Search in Google Scholar

9. Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987;162(1):156–9; DOI:10.1016/0003-2697(87)90021-2.Search in Google Scholar

10. Zhang Y, Szustakowski J, Schinke M. Bioinformatics analysis of microarray data. Methods Mol Biol. 2009;573:259–84; DOI:10.1007/978-1-60761-247-6_15/COVER.Search in Google Scholar

11. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R, Leisch F, Li C, Maechler M, Rossini AJ, Sawitzki G, Smith C, Smyth G, Tierney L, Yang JY, Zhang J. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 2004 510. 2004;5(10):1–16; DOI:10.1186/GB-2004-5-10-R80.Search in Google Scholar

12. Dennis G, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA. DAVID: database for annotation, visualization, and integrated discovery. Genome Biol. 2003;4(5):1–11; DOI:10.1186/GB-2003-4-9-R60/TABLES/3.Search in Google Scholar

13. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P, Jensen LJ, Von Mering C. STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47(D1):D607–13; DOI:10.1093/NAR/GKY1131.Search in Google Scholar

14. Wen X, Li D, Tozer AJ, Docherty SM, Iles RK. Estradiol, progesterone, testosterone profiles in human follicular fluid and cultured granulosa cells from luteinized pre-ovulatory follicles. Reprod Biol Endocrinol. 2010;8(1):117; DOI:10.1186/1477-7827-8-117.Search in Google Scholar

15. Heiligentag M, Eichenlaub-Ritter U. Preantral follicle culture and oocyte quality. Reprod Fertil Dev. 2017;30(1):18–43; DOI:10.1071/RD17411.Search in Google Scholar

16. Fortune JE. Ovarian production of estradiol: the two-cell, two-gonadotropin model. Encycl Reprod. 2018;165–71; DOI:10.1016/B978-0-12-801238-3.64637-8.Search in Google Scholar

17. Turathum B, Gao EM, Chian RC. The function of cumulus cells in oocyte growth and maturation and in subsequent ovulation and fertilization. Cells. 2021;10(9); DOI:10.3390/CELLS10092292.Search in Google Scholar

18. Kranc W, Budna J, Kahan R, Chachuła A, Bryja A, Ciesiółka S, Borys S, Antosik MP, Bukowska D, Brussow KP, Bruska M, Nowicki M, Zabel M, Kempisty B. Molecular basis of growth, proliferation, and differentiation of mammalian follicular granulosa cells. J Biol Regul Homeost Agents. n.d.;31(1):1–8.Search in Google Scholar

19. Fazio S, Linton MF, Swift LL. The cell biology and physiologic relevance of ApoE recycling. Trends Cardiovasc Med. 2000;10(1):23–30; DOI:10.1016/S1050-1738(00)00033-5.Search in Google Scholar

20. Kockx M, Traini M, Kritharides L. Cell-specific production, secretion, and function of apolipoprotein E. J Mol Med (Berl). 2018;96(5):361–71; DOI:10.1007/S00109-018-1632-Y.Search in Google Scholar

21. Nicosia M, Moger WH, Dyer CA, Prack MM, Williams DL. Apolipoprote-in-E messenger RNA in rat ovary is expressed in theca and interstitial cells and presumptive macrophage, but not in granulosa cells. Mol Endocrinol. 1992;6(6):978–88; DOI:10.1210/MEND.6.6.1495495.Search in Google Scholar

22. Polacek D, Beckmann MW, Schreiber JR. Rat ovarian apolipoprotein E: localization and gonadotropic control of messenger RNA. Biol Reprod. 1992;46(1):65–72; DOI:10.1095/BIOLREPROD46.1.65.Search in Google Scholar

23. Gautier T, Becker S, Drouineaud V, Ménétrier F, Sagot P, Nofer JR, Von Otte S, Lagrost L, Masson D, Tietge UJF. Human luteinized granulosa cells secrete apoB100-containing lipoproteins. J Lipid Res. 2010;51(8):2245–52; DOI:10.1194/JLR.M005181.Search in Google Scholar

24. Schaefer EJ, Geller AS, Endress G. The biochemical and genetic diagnosis of lipid disorders. Curr Opin Lipidol. 2019;30(2):56–62; DOI:10.1097/MOL.0000000000000590.Search in Google Scholar

25. Bahrami A, Barreto GE, Lombardi G, Pirro M, Sahebkar A. Emerging roles for high-density lipoproteins in neurodegenerative disorders. Biofactors. 2019;45(5):725–39; DOI:10.1002/BIOF.1541.Search in Google Scholar

26. Souri M, Aoyama T, Yamaguchi S, Hashimoto T. Relationship between structure and substrate-chain-length specificity of mitochondrial very-long-chain acyl-coenzyme A dehydrogenase. Eur J Biochem. 1998;257(3):592–8; DOI:10.1046/J.1432-1327.1998.2570592.X.Search in Google Scholar

27. Xiong D, He H, James J, Tokunaga C, Powers C, Huang Y, Osinska H, Towbin JA, Purevjav E, Balschi JA, Javadov S, McGowan FX, Strauss AW, Khuchua Z. Cardiac-specific VLCAD deficiency induces dilated cardiomyopathy and cold intolerance. Am J Physiol Heart Circ Physiol. 2014;306(3); DOI:10.1152/AJPHEART.00931.2012.Search in Google Scholar

28. Shin E-K, Kang HY, Yang H, Jung E-M, Jeung E-B. The regulation of fatty acid oxidation in human preeclampsia. Reprod Sci. 2016;23(10):1422-33; DOI:10.1177/1933719116641759.Search in Google Scholar

29. Kwantwi LB, Wang S, Sheng Y, Wu Q. Multifaceted roles of CCL20 (C-C motif chemokine ligand 20): mechanisms and communication networks in breast cancer progression. Bioengineered. 2021;12(1):6923; DOI:10.1080/21655979.2021.1974765. Search in Google Scholar

30. Duan YG, Wehry UP, Buhren BA, Schrumpf H, Oláh P, Bünemann E, Yu CF, Chen SJ, Müller A, Hirchenhain J, Van Lierop A, Novak N, Cai ZM, Krüssel JS, Schuppe HC, Haidl G, Gerber PA, Allam JP, Homey B. CCL20-CCR6 axis directs sperm-oocyte interaction and its dysregulation correlates/associates with male infertility‡. Biol Reprod. 2020;103(3):630–42; DOI:10.1093/BIOLRE/IOAA072.Search in Google Scholar

31. Sepuru KM, Poluri KM, Rajarathnam K. Solution structure of CXCL5 - a novel chemokine and adipokine implicated in inflammation and obesity. PLoS One. 2014;9(4); DOI:10.1371/JOURNAL.PONE.0093228.Search in Google Scholar

32. Kawagoe Y, Kawashima I, Sato Y, Okamoto N, Matsubara K, Kawamura K. CXCL5-CXCR2 signaling is a senescence-associated secretory phenotype in preimplantation embryos. Aging Cell. 2020;19(10); DOI:10.1111/ACEL.13240.Search in Google Scholar

33. Li J, Li C, Li Q, Li G, Li W, Li H, Kang X, Tian Y. Novel regulatory factors in the hypothalamic-pituitary-ovarian axis of hens at four developmental stages. Front Genet. 2020;11:1367; DOI:10.3389/FGENE.2020.591672.Search in Google Scholar

34. Nourbakhsh M, Douglas DN, Pu CH, Lewis JT, Kawahara T, Lisboa LF, Wei E, Asthana S, Quiroga AD, Law LMJ, Chen C, Addison WR, Nelson R, Houghton M, Lehner R, Kneteman NM. Arylacetamide deacetylase: a novel host factor with important roles in the lipolysis of cellular triacylglycerol stores, VLDL assembly and HCV production. J Hepatol. 2013;59(2):336–43; DOI:10.1016/J.JHEP.2013.03.022.Search in Google Scholar

35. Arboleda VA, Quigley CA, Vilain E. Genetic basis of gonadal and genital development. Endocrinol Adult Pediatr. 2016;2–2:2051-2085.e7; DOI:10.1016/B978-0-323-18907-1.00118-9.Search in Google Scholar

36. Stocco DM. StAR protein and the regulation of steroid hormone biosynthesis. Annu Rev Physiol. 2001;63:193–213; DOI:10.1146/ANNUREV. PHYSIOL.63.1.193.Search in Google Scholar

37. Sugawara T, Holt JA, Driscoll D, Strauss JF, Lin D, Miller WL, Patterson D, Clancy KP, Hart IM, Clark BJ, Stocco DM. Human steroidogenic acute regulatory protein: functional activity in COS-1 cells, tissue-specific expression, and mapping of the structural gene to 8p11.2 and a pseudogene to chromosome 13. Proc Natl Acad Sci USA. 1995;92(11):4778–82; DOI:10.1073/PNAS.92.11.4778.Search in Google Scholar

38. Kranc W, Brązert M, Ożegowska K, Nawrocki M, Budna J, Celichowski P, Dyszkiewicz-Konwińska M, Jankowski M, Jeseta M, Pawelczyk L, Bruska M, Nowicki M, Zabel M, Kempisty B. Expression profile of genes regulating steroid biosynthesis and metabolism in human ovarian granulosa cells - a primary culture approach. Int J Mol Sci. 2017;18(12):2673; DOI:10.3390/ijms18122673.Search in Google Scholar

39. Hallenborg P, Jørgensen C, Petersen RK, Feddersen S, Araujo P, Markt P, Langer T, Furstenberger G, Krieg P, Koppen A, Kalkhoven E, Madsen L, Kristiansen K. Epidermis-type lipoxygenase 3 regulates adipocyte differentiation and peroxisome proliferator-activated receptor gamma activity. Mol Cell Biol. 2010;30(16):4077–91; DOI:10.1128/MCB.01806-08.Search in Google Scholar

40. Tsai YS, Tsai PJ, Jiang MJ, Chou TY, Pendse A, Kim HS, Maeda N. Decreased PPAR gamma expression compromises perigonadal-specific fat deposition and insulin sensitivity. Mol Endocrinol. 2009;23(11):1787–98; DOI:10.1210/ME.2009-0073.Search in Google Scholar

41. Seiri P, Abi A, Soukhtanloo M. PPAR-γ: Its ligand and its regulation by microRNAs. J Cell Biochem. 2019;120(7):10893–908; DOI:10.1002/JCB.28419.Search in Google Scholar

42. Sahmani M, Najafipour R, Farzadi L, Sakhinia E, Darabi M, Shahnazi V, Mehdizadeh A, Shaaker M, Noori M. Correlation between PPARγ protein expression level in granulosa cells and pregnancy rate in IVF program. Iran J Reprod Med. 2012;10(2):149.Search in Google Scholar

43. Kitamura K, Sakata J, Kangawa K, Kojima M, Matsuo H, Eto T. Cloning and characterization of cDNA encoding a precursor for human adrenomedullin. Biochem Biophys Res Commun. 1993;194(2):720–5; DOI:10.1006/BBRC.1993.1881.Search in Google Scholar

44. Makino Y, Shibata K, Makino I, Kangawa K, Kawarabayashi T. Alteration of the adrenomedullin receptor components gene expression associated with the blood pressure in pregnancy-induced hypertension. J Clin Endocrinol Metab. 2001;86(10):5079–5079; DOI:10.1210/JCEM.86.10.8099.Search in Google Scholar

45. Belani M, Deo A, Shah P, Banker M, Singal P, Gupta S. Differential insulin and steroidogenic signaling in insulin resistant and non-insulin resistant human luteinized granulosa cells-A study in PCOS patients. J Steroid Biochem Mol Biol. 2018;178:283–92; DOI:10.1016/J.JSBMB.2018.01.008.Search in Google Scholar

46. Sekulovski N, Whorton AE, Shi M, Hayashi K, MacLean JA. Insulin signaling is an essential regulator of endometrial proliferation and implantation in mice. FASEB J. 2021;35(4); DOI:10.1096/FJ.202002448R.Search in Google Scholar

47. Daghestani MH, Alqahtani HA, AlBakheet AB, Al Deery M, Awartani KA, Daghestani MH, Kaya N, Warsy A, Coskun S, Colak D. Global transcriptional profiling of granulosa cells from polycystic ovary syndrome patients: comparative analyses of patients with or without history of ovarian hyperstimulation syndrome reveals distinct biomarkers and pathways. J Clin Med. 2022;11(23); DOI:10.3390/JCM11236941.Search in Google Scholar

eISSN:
2544-3577
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Molecular Biology, Biochemistry