Open Access

Adenosine pretreatment attenuates angiotensin II-mediated p38 MAPK activation in a protein kinase A dependent manner


Cite

1. Ohta A, Sitkovsky M. Role of G-protein-coupled adenosine receptors in down regulation of inflammation and protection from tissue damage. Nature. 2001; 414:916-20.10.1038/414916aSearch in Google Scholar

2. Hasko G, Linden J, Cronstein B, Pacher P. Adenosine receptors: therapeutic aspects for inflammatory and immune diseases. Nat Rev Drug Discov. 2008; 7: 759-70.10.1038/nrd2638Open DOISearch in Google Scholar

3. Fredholm BB. Adenosine, an endogenous distress signal, modulates tissue damage and repair. Cell Death Differ. 2007; 14:1315-23.10.1038/sj.cdd.4402132Open DOISearch in Google Scholar

4. Xu Z, Muller RA, Park SS, Boysen PG, Cohen MV, Downey JM. Cardioprotection with adenosine A2 receptor activation at reperfusion. J Cardiovasc Pharmacol. 2005; 46:794-802.10.1097/01.fjc.0000188161.57018.29Search in Google Scholar

5. Sitkovsky MV. Use of the A2A adenosine receptor as a physiological immunosuppressor and to engineer inflammation in vivo. Biochem Pharmacol. 2003; 65: 493-501.1256607610.1016/S0006-2952(02)01548-4Search in Google Scholar

6. Mehta PK, Griendling KK. Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system. Am J Physiol Cell Physiol. 2007; 292: 82-97.10.1152/ajpcell.00287.200616870827Search in Google Scholar

7. Grote K, Drexler H, Schieffer B. Renin-angiotensin system and atherosclerosis. Nephrol Dial Transplant. 2004; 19: 770-3.10.1093/ndt/gfh03015031327Search in Google Scholar

8. Raffetto JD, Khalil RA. Matrix metalloproteinases and their inhibitors in vascular remodeling and vascular disease. Biochem Pharmacol. 2008; 75:346-59.10.1016/j.bcp.2007.07.004225413617678629Search in Google Scholar

9. Galis ZS, Khatri JJ. Matrix metalloproteinases in vascular remodeling and atherogenesis: the good, the bad, and the ugly. Circ Res. 2002; 90:251-62.10.1161/res.90.3.251Search in Google Scholar

10. Guo RW, Yang LX, Wang H, Liu B, Lei W. Angiotensin II induces matrix metalloproteinase-9 expression via a nuclear factor-kappaB-dependent pathway in vascular smooth muscle cells. Regulatory Peptides. 2008; 147: 37-44.10.1016/j.regpep.2007.12.00518252266Search in Google Scholar

11. Higuchi S, Ohtsu H, Suzuki H, Shirai H, Frank GD, Eguchi S. Angiotensin II signal transduction through the AT1 receptor: novel insights into mechanisms and pathophysiology. Clinical Science. 2007; 112:417-28.10.1042/CS2006034217346243Search in Google Scholar

12. Das UN. Is angiotensin-II an endogenous proinflammatory molecule? Med Sci Monit. 2005; 11: RA155-162.Search in Google Scholar

13. Mogi M, Iwai M, Horiuchi M. Emerging concepts of regulation of angiotensin II receptors, new players and targets for traditional receptors. Arterioscler Thromb Vasc Biol. 2007; 27:2532-9.10.1161/ATVBAHA.107.14415417717300Open DOISearch in Google Scholar

14. Rezaei A, Ardestani SK, Forouzandeh M, Tavangar SM, Khorramizadeh MR, Payabvash S, et al. The effects of N-acetylcysteine on the expression of matrix metalloproteinase-2 and tissue inhibitor of matrix metalloproteinase-2 in hepatic fibrosis in bile duct ligated rats. Hepatol Res. 2008; 38:1252-63.10.1111/j.1872-034X.2008.00393.x18713279Search in Google Scholar

15. Ernens I, Rouy D, Velot E, Devaux Y, Wagner DR. Adenosine inhibits matrix metalloproteinase-9 secretion by neutrophils, implication of A2a receptor and cAMP/PKA/Ca2+ pathway. Circ Res. 2006; 99: 590-7.10.1161/01.RES.0000241428.82502.d416917093Search in Google Scholar

16. Zhao P, Li XG, Yang M, Shao Q, Wang D, Liu S, et al. Hypoxia suppresses the production of MMP-9 by human monocyte-derived dendritic cells and requires activation of adenosine receptor A2b via cAMP/PKA signaling pathway. Mol Immunol. 2008; 45:2187-95.10.1016/j.molimm.2007.12.00218215420Open DOISearch in Google Scholar

17. Fotheringham JA, Mayne MB, Grant JA, Geiger JD. Activation of adenosine receptors inhibits tumor necrosis factor-alpha release by decreasing TNF-alpha mRNA stability and p38 activity. Eur J Pharmacol. 2004; 497:87-95.10.1016/j.ejphar.2004.06.02915321739Search in Google Scholar

18. Kim MP, Zhou M, Wahl LM. Angiotensin II increases human monocyte matrix metalloproteinase-1 through the AT2 receptor and prostaglandin E2: implications for atherosclerotic plaque rupture. J Leukoc Biol. 2005; 78:195-201.10.1189/jlb.120471515817699Search in Google Scholar

19. Kanome T, Watanabe T, Nishio K, Takahashi K, Hongo S, Miyazaki A. Angiotensin II upregulates acyl-CoA: cholesterol acyltransferase-1 via the angiotensin II type 1 receptor in human monocyte-macrophages. Hypertense Res. 2008; 31:1801-10.10.1291/hypres.31.180118971559Search in Google Scholar

20. Yuan ZY, Nimata M, Okabe T, Shioji K, Hasegawa K, Kita T, et al. Olmesartan, a novel AT(1) antagonist, suppresses cytotoxic myocardial injury in autoimmune heart failure. Am J Physiol Heart Circ Physiol. 2005; 289:H1147-52.10.1152/ajpheart.00078.200515879491Search in Google Scholar

21. Hasko G, Pacher P, Deitch EA, Vizi ES. Shaping of monocyte and macrophage function by adenosine receptors. Pharmacol Ther. 2007; 113:264-75.10.1016/j.pharmthera.2006.08.003222826517056121Search in Google Scholar

22. Khoa ND, Montesinos MC, Reiss AB, Delano D, Awadallah N, Cronstein BN. Inflammatory cytokines regulate function and expression of adenosine A2A receptors in human monocytic THP-1 cells. J Leukoc Biol. 2004; 76:727-34.Search in Google Scholar

23. Thiele A, Kronstein R, Wetzel A, Gerth A, Nieber K, Hauschildt S. Regulation of adenosine receptor subtypes during cultivation of human monocytes: role of receptor in preventing lipopolysaccharide-triggered respiratory burst. Infect Immun. 2004; 72:1349-57.10.1128/IAI.72.3.1349-1357.200435599714977938Search in Google Scholar

24. Velot E, Hass B, Leonard F, Ernens I, Rolland-Turner M, Schwartz C, et al. Activation of the adenosine-A3 receptor stimulates matrix metalloproteinase-9 secretion by macrophages. Cardiovasc Res. 2008; 80: 246-54.10.1093/cvr/cvn20118653544Open DOISearch in Google Scholar

25. Majumdar S, Aggarwal BB. Adenosine suppresses activation of nuclear factor-κB selectively induced by tumor necrosis factor in different cell types. Oncogene. 2003; 22:1206-18.10.1038/sj.onc.120618412606947Search in Google Scholar

26. Ribe D, Sawbridge D, Thakur S, Hussey M, Ledent C, Kitchen I, et al. Adenosine A2A receptor signaling regulation of cardiac NADPH oxidase activity. Free Radic Biol Med. 2008; 44:1433-42.10.1016/j.freeradbiomed.2007.12.035288961218206127Search in Google Scholar

27. Palmer TM, Trevethick MA. Suppression of inflammatory and immune responses by the A2A adenosine receptor: an introduction. Br J Pharmacol. 2008; 153:S27-34.10.1038/sj.bjp.0707524226803818026131Search in Google Scholar

28. Martin L, Pingle SC, Hallam DM, Rybak LP, Ramkumar V. Activation of the adenosine A3 receptor in RAW 264.7 cells inhibits lipopolysaccharide-stimulated tumor necrosis factor-α release by reducing calciumdependent activation of nuclear factor-kB and extracellular signal-regulated kinase 1/2. J Pharmacol Exp Ther. 2006; 316:71-8.10.1124/jpet.105.09186816188954Search in Google Scholar

29. Vincenti MP, Brinckerhoff CE. Signal transduction and cell-type specific regulation of matrix metalloproteinase gene expression: can MMPs be good for you? J Cell Physiol. 2007; 213:355-64.10.1002/jcp.21208Search in Google Scholar

30. Fiotti N, Altamura N, Fisicaro M, Carraro N, Uxa L, Grassi G, et al. MMP-9 microsatellite polymorphism and susceptibility to carotid arteries atherosclerosis. Arterioscler Thromb Vasc Biol. 2006; 26:1330-6.10.1161/01.ATV.0000219233.31702.c916574900Search in Google Scholar

31. Jijon HB, Walker J, Hoentjen F, Diaz H, Ewaschuk J, Jobin C, et al. Adenosine is a negative regulator of NF-κB and MAPK signaling in human intestinal epithelial cells. Cell Immunol. 2005; 237:86-95.10.1016/j.cellimm.2005.10.00516413516Search in Google Scholar

32. Zhang L, Ma Y, Zhang J, Cheng J, Du J. A new cellular signaling mechanism for angiotensin II activation of NF-kappaB: an IkappaB-independent, RSK mediated phosphorylation of p65. Arterioscler Thromb Vasc Biol. 2005; 25:1148-53.10.1161/01.ATV.0000164624.00099.e715802625Open DOISearch in Google Scholar

33. Martin L, Pingle SC, Hallam DM, Rybak LP, Ramkumar V. Activation of the adenosine A3 receptor in RAW 264.7 cells inhibits lipopolysaccharide-stimulated tumor necrosis factor-α release by reducing calciumdependent activation of nuclear factor-κB and extracellular signal-regulated kinase 1/2. J Pharmacol Exp Ther. 2006; 316:71-8.10.1124/jpet.105.091868Search in Google Scholar

34. Beshesh K, Zhao B, Spight D, Biaggioni I, Feokistov I, Denenberg A, et al. The A2A receptor mediates an endogenous regulatory pathway of cytokine expression in THP-1 cells. J Leukoc Biol. 2002; 72: 1027-37.10.1189/jlb.72.5.1027Search in Google Scholar

35. Minguest S, Huber M, Rosenkranz L, Schamel WA, Reth M, Brummer T. Adenosine and cAMP are potent inhibitors of the NF-κB pathway downstream of immunoreceptors. Eur J Immunol. 2005; 35:31-41.10.1002/eji.20042552415580656Open DOISearch in Google Scholar

36. Lukashev D, Ohta A, Apasov S, Chen JF, Sitkovsky M. Cutting edge: physiologic attenuation of proinflammatory transcription by the Gs protein-coupled A2A adenosine receptor in vivo. J Immunol. 2004; 173: 21-4.10.4049/jimmunol.173.1.2115210754Search in Google Scholar

eISSN:
1875-855X
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
Medicine, Assistive Professions, Nursing, Basic Medical Science, other, Clinical Medicine