Open Access

The role of metabolic acidosis in chronic kidney diseases


Cite

1. Relman AS. The acidosis of renal disease. Am J Med. 1968; 44:706-13.10.1016/0002-9343(68)90252-0Search in Google Scholar

2. Chan JCM. Nutrition and acid-base metabolism. Federation Proc. 40:2423-8, 1981.Search in Google Scholar

3. Winters RW. The body fluids in pediatrics. Boston: Little Brown and Co, 1973.Search in Google Scholar

4. Chan JCM. Acid-base disorders and the kidney. Adv Pediatr. 1983; 30:401-71.10.1016/S0065-3101(22)00585-0Search in Google Scholar

5. Relman AS, Kurtz I. Milestones in nephrology. Feature editor: M A Knepper. J Am Soc Nephrol. 2000; 11:2155-64.10.1681/ASN.V11112155Search in Google Scholar

6. Goodman AD, Lemann J Jr, Lennon EJ, Relman AS. Production, excretion, and net balance of fixed acid in patients with renal acidosis. J Clin Invest. 1965; 44: 495-506.10.1172/JCI105163Open DOISearch in Google Scholar

7. Relman AR, Lennon EJ, Lemann J Jr. Endogenous production of fixed acid and the measurement of the net balance of acid in normal subjects. J Clin Invest. 1961; 40:1621-30.10.1172/JCI104384Search in Google Scholar

8. Chan JCM, Goplerud JM, Papadopoulou ZL, Novello AC. Kidney failure in childhood. Int J Pediatr Nephrol. 1981; 2:201-22.Search in Google Scholar

9. Rodriguez-Soriano J, Vallo A, Castillo G, Oliveros, R. Natural history of primary distal renal tubular acidosis treated since infancy. J Pediatr. 1982; 101:669-76.10.1016/S0022-3476(82)80288-6Search in Google Scholar

10. Norman ME, Feldmn NI, Cohn RM, Roth KS, McCurdy DK. Urinary citrate excretion in the diagnosis of distal renal tubular acidosis. J Pediatr. 1978; 92: 394-400.10.1016/S0022-3476(78)80426-0Search in Google Scholar

11. Chan JCM. Renal tubular acidosis: Medical progress. J Pediatr. 1983; 102:327-40.10.1016/S0022-3476(83)80644-1Open DOISearch in Google Scholar

12. Nordin BEC. Calcium, phosphate and magnesium metabolism. London: Churchill Livingston; 1976.Search in Google Scholar

13. Lee SW, Russell J, Avioli LV. 25 hydroxycholecalciferol to 1, 25 dihydroxycholecalciferol: conversion impaired by systemic metabolic acidosis. Science. 1977; 195: 994-6.10.1126/science.841324Search in Google Scholar

14. Chesney RW, Kaplan BS, Phelps M, DeLuca HP. Renal tubular acidosis does not alter circulating values of calcitriol. J Pediatr. 1984; 104:51-5.10.1016/S0022-3476(84)80588-0Search in Google Scholar

15. Weber HP, Gray RW, Dominguez JH, Lemann J Jr. The lack of effect of chronic metabolic acidosis on 25-hydroxyvitamin D metabolism and serum parathyroid hormone in humans. J Clin Endocrinol Metab. 1976; 43:1047-55.10.1210/jcem-43-5-1047993311Open DOISearch in Google Scholar

16. Krapf R, Vetsch R, Vetsch W, Hulter HN. Chronic metabolic acidosis increases the serum concentration of 1, 25 dihydroxyvitamin D in humans by stimulating its production rate. Critical role of acidosis-induced renal hypophosphatemia. J Clin Invest. 1992; 90: 2456-63.10.1172/JCI1161374434021469097Search in Google Scholar

17. Mitch WE, Medina R, Grieber S, May RC, England BK, Price SR, et al. Metabolic acidosis stimulates muscle protein degradation by activating the adenosine triphosphate-dependent pathway involving ubiquitin and proteasomes. J Clin Invest. 1994; 93:2127-33.10.1172/JCI117208Open DOISearch in Google Scholar

18. Mitch WE, Goldberg AL. Mechanisms of muscle wasting. The role of the ubiquitin-proteasome system. N Engl J Med. 1996; 335:1897-905.10.1056/NEJM199612193352507Search in Google Scholar

19. Rajan VR, Mitch WE. Muscle wasting in chronic kidney disease: the role of the ubiquitin proteasome system and its clinical impact. Pediatr Nephrol. 2008; 23:527-35.10.1007/s00467-007-0594-zOpen DOISearch in Google Scholar

20. Mak RH. Effect of metabolic acidosis on insulin action and secretion in uremia. Kidney Int. 1998; 54:603-7.10.1046/j.1523-1755.1998.00023.xOpen DOISearch in Google Scholar

21. Schambelan M, Sebastian A, Katuna A, Arteaga E. Adrenocortical hormone secretory response to chronic NH4Cl-induced metabolic acidosis. Am J Physiol. 2001; 252:E454-60.10.1152/ajpendo.1987.252.4.E454Search in Google Scholar

22. Salusky IB, Kuizon BG, Juppner H. Special aspects of renal osteodystrophy in children. Sem Nephrol. 2004; 24:69-77.10.1053/j.semnephrol.2003.08.009Search in Google Scholar

23. Abitbol CL, Warady BA, Massie MD, Baluarte JH, Fleischman LE, Geary DF, et al. Linear growth and anthropometric and nutritional measurements in children with mild to moderate renal insufficiency: a report of the growth failure in children with renal diseases study. J Pediatr. 1990; 116:S46-54.10.1016/S0022-3476(05)82925-7Search in Google Scholar

24. Challa A, Krieg RJ Jr, Thabet MA, Veldhuis JD, Chan JCM. Metabolic acidosis inhibits growth hormone secretion in rats: mechanism of growth retardation. Am J Physiol. 1993; 265:E547-53.10.1152/ajpendo.1993.265.4.E5478238328Search in Google Scholar

25. Challa A, Chan W, Krieg RJ Jr, Thabet MA, Liu F, Hintz RL, et al. Effect of metabolic acidosis on the expression of insulin-like growth factor and growth hormone receptor. Kidney Int. 1993; 44:1224-7.10.1038/ki.1993.3728301923Search in Google Scholar

26. Santos F, Chan JCM, Krieg RJ, Niimi K, Hanna JD, Wellons MD, et al. Growth hormone secretion from pituitary cells in chronic renal insufficiency. Kidney Int. 1992; 41:356-60.10.1038/ki.1992.491552708Open DOISearch in Google Scholar

27. Brungger M, Hulter HN, Krapf R. Effect of chronic metabolic acidosis on thyroid hormone homeostasis in humans. Am J Physiol. 1997; 272:E648-53.10.1152/ajprenal.1997.272.5.F6489176376Search in Google Scholar

28. Graham KA, Reaich D, Channon SM, Downie S, Goodship TH. Correction of acidosis in hemodialysis patients increases the sensitivity of the parathyroid glands to calcium. J Am Soc Nephrol. 1997; 8:627-31.10.1681/ASN.V8462710495792Search in Google Scholar

29. Gattineni J, Bates C, Twombley K, Dwarakanath V, Robinson ML, Goetz RM, et al. FGF23 decreases renal NaPi-2a and NaPi-2c expression and induces hypophosphatemia in vivo predominantly via FGF Receptor 1. Am J Physiol. 2009; 297:F282-91.10.1152/ajprenal.90742.2008272425819515808Search in Google Scholar

30. Gutierrez OM, Mannstadt M, Isakova T, Rauh-Hain JA, Tamez H, Shah A, et al. Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis. New Engl J Med. 2008; 359:584-92.10.1056/NEJMoa0706130289026418687639Search in Google Scholar

31. Hsu C. FGF-23 and outcomes research - when physiology meets epidemiology. New Engl J Med. 2008; 359: 640-2.10.1056/NEJMe080466018687647Search in Google Scholar

32. Chan JCM, Scheinman JI, Roth KS. Renal tubular acidosis. Pediatr Rev. 2001; 22:277-86.10.1542/pir.22-8-27711483854Open DOISearch in Google Scholar

33. Futrakul N, Sila-asna M, Futrakul P. Therapeutic strategy towards renal restoration in chronic kidney disease. Asian Biomed. 2007; 1:33-44.Search in Google Scholar

eISSN:
1875-855X
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
Medicine, Assistive Professions, Nursing, Basic Medical Science, other, Clinical Medicine