Open Access

BSDEs driven by two mutually independent fractional Brownian motions with stochastic Lipschitz coefficients


Cite

Introduction

Backward stochastic differential equations (BSDEs in short) were first introduced by Pardoux and Peng [7]. They proved the celebrated existence and uniqueness result under Lipschitz assumption. This pioneer work was extensively used in many fields like stochastic interpretation of solutions of PDEs and financial mathematics.

Few years later, several authors investigated BSDEs with respect to fractional Brownian motion (BtH)t0 $\begin{array}{} \big(B^H_t\big)_{t\geq 0} \end{array}$ with Hurst parameter H. Since BH is not a semimartingale when H 12 $\begin{array}{} \frac{1}{2} \end{array}$, we cannot use the beautiful classical theory of stochastic calculus to define the fractional stochastic integral. It is a significant and challenging problem to extend the results in the classical stochastic calculus to this fractional Brownian motion. Essentially, two different types of integrals with respect to a fractional Brownian motion have been defined and studied. The first one is the pathwise Riemann-Stieltjes integral (see Young [10]). This integral has a proprieties of Stratonovich integral, which leads to difficulties in applications. The second one, introduced in Decreusefond and Ustunel [3] is the divergence operator (or Skorohod integral), defined as the adjoint of the derivative operator in the framework of the Malliavin calculus. Since this stochastic integral satisfies the zero mean property and it can be expressed as the limit of Riemann sums defined using Wick products, it was later developed by many authors.

Recently, new classes of BSDEs driven by both standard and fractional Brownian motions were introduced by Fei et al [4]. They established the existence and uniqueness of solutions.

In this paper, our aim is to generalize the result established in [2] to the following equation called fractional BSDE under stochastic conditions on the generator:

Yt=ξ+tTf(s,ηs,Ys,Z1,s,Z2,sdstTZ1,sdB1,tH1tTZ2,sdB2,tH2,t[0,T], $$\begin{array}{} \displaystyle Y_t = \xi + \int_t^Tf(s, \eta_s,Y_s, Z_{1,s},Z_{2,s}ds - \int_t^TZ_{1,s}dB_{1,t}^{H_1} - \int_t^T Z_{2,s}dB_{2,t}^{H_2},\quad t\in [0, T], \end{array}$$

where B1,tH1t0 and B2,tH2t0 $\begin{array}{} \left(B_{1,t}^{H_1}\right)_{t\geq 0}\text{ and }\left(B_{2,t}^{H_2}\right)_{t\geq 0} \end{array}$ are two mutually independent fractional Brownian motions. The novelty in these types of stochastic equations lies in the fact of coupling two mutually independent fractional Brownian motions. In this work, the authors established some properties of solutions of a fractional BSDE with Lipschitz coefficients. By the help of the fixed point principle, we establish existence and uniqueness of solutions.

The paper is organized as follows: In Section 2, we introduce some preliminaries, before studying the solvability of our equation under Lipschitz conditions on the generator in Section 3. Using this result, we prove existence and uniqueness of the solution with a coefficient satisfying rather weaker conditions.

Fractional Stochastic calculus

Let us assume given two mutually independent fractional Brownian motions BHB1H1,B2H2 $\begin{array}{} B^{H}\in\left\{B_1^{H_1}, B_2^{H_2}\right\} \end{array}$ with Hurst parameter H 12 $\begin{array}{} \frac{1}{2} \end{array}$ is given.

Let Ώ be a non-empty set, ℱ a σ−algebra of sets Ώ, P a probability measure defined on ℱ and {ℱt, t ∈ [0, T]} a σ−algebra generated by both fractional Brownian motions.

The triplet (Ώ, ℱ, P) defines a probability space and E the mathematical expectation with respect to the probability measure P.

The fractional Brownian motion BH is a zero mean Gaussian process with the covariance function

E[BtHBsH]=12t2H+s2H|ts|2H,t,s0. $$\begin{array}{} \displaystyle {\bf E}[B_t^{H}B_s^{H}]=\frac{1}{2}\left(t^{{2H}} + s^{{2H}} -|t-s|^{{2H}}\right), \quad t,s\geq0. \end{array}$$

Denote ϕ(t, s) = H(2H − 1)∣ts2H−2, (t, s) ∈ R2.

Let ξ and η be measurable functions on [0, T]. Define

ξ,ηt=0t0tϕ(u,v)ξ(u)η(v)dudvandξt2=ξ,ξt. $$\begin{array}{} \displaystyle \langle \xi,\eta\rangle_t =\int_0^t\int_0^t\phi(u,v)\xi(u)\eta(v)dudv \quad\text{and}\quad \left\|\xi\right\|_t^2 = \langle \xi ,\xi \rangle_t. \end{array}$$

Note that, for any t ∈ [0, T], 〈ξ, ηt is a Hilbert scalar product. Let 𝓗 be the completion of the set of continuous functions under this Hilbert norm ∥⋅∥t and (ξn)n be a sequence in 𝓗 such that 〈ξi,ξjT = δij.

Let PTH $\begin{array}{} \mathscr{P}_T^{H} \end{array}$ be the set of all polynomials of fractional Brownian motion (BtH)t0. $\begin{array}{} \big(B^H_t\big)_{t\geq 0}. \end{array}$ Namely, PTH $\begin{array}{} \mathscr{P}_T^{H} \end{array}$ contains all elements of the form

F(ω)=f0Tξ1(t)dBtH,0Tξ2(t)dBtH,,0Tξn(t)dBtH $$\begin{array}{} \displaystyle F(\omega)=f\left(\int_0^T\xi_1(t)dB_t^{H}, \int_0^T\xi_2(t)dB_{t}^{H},\dots, \int_0^T\xi_n(t)dB_{t}^{H} \right) \end{array}$$

where f is a polynomial function of n variables.

The Malliavin derivative DtH $\begin{array}{} D_t^{H} \end{array}$ of F is given by

DsHF=j=1nfxj0Tξ1(t)dBtH,0Tξ2(t)dBtH,,0Tξn(t)dBtHξj(s),0sT. $$\begin{array}{} \displaystyle D_s^{H}F=\sum_{j=1}^n\frac{\partial f}{\partial x_j}\left(\int_0^T\xi_1(t)dB_t^{H}, \int_0^T\xi_2(t)dB_t^{H},\dots, \int_0^T\xi_n(t)dB_t^{H} \right)\xi_j(s), \quad 0\leq s\leq T. \end{array}$$

Now we introduce the Malliavin ϕ-derivative DtH $\begin{array}{} \mathbb{D}_t^{H} \end{array}$ of F by

DtHF=0Tϕ(t,s)DsHFds. $$\begin{array}{} \displaystyle \mathbb{D}_t^{H}F=\int_0^T\phi(t,s)D_s^{H}Fds. \end{array}$$

We have the following (see[[5], Proposition 6.25]):

Theorem 2.1

Let F : (Ω, ℱ, P) ⟶ 𝓗 be a stochastic processes such that

EFT2+0T0T|DsHFt|2dsdt<+. $$\begin{array}{} \displaystyle {\bf E}\left(\left\|F\right\|_T^2 +\int_0^T\int_0^T |\mathbb{D}_s^{H} F_t|^2 ds dt\right) \lt +\infty. \end{array}$$

Then, the Itô-Skorohod-type stochastic integral denoted by 0TFsdBsH $\begin{array}{} \int_0^TF_sdB_s^{H} \end{array}$ exists in L2(Ω, ℱ, P) and satisfies

E0TFsdBsH=0andE0TFsdBsH2=EFT2+0T0TDsHFtDtHFsdsdt. $$\begin{array}{} \displaystyle {\bf E}\left( \int_0^TF_sdB_s^{H}\right)=0 \quad{and}\quad {\bf E} \left( \int_0^TF_sdB_s^{H}\right)^2= {\bf E}\left(\Vert F\Vert_T^2 + \int_0^T\int_0^T\mathbb{D}_s^{H} F_t\mathbb{D}_t^{H} F_sdsdt \right). \end{array}$$

Let us recall the fractional Itô formula (see[[4], Theorem 3.1]).

Theorem 2.2

Let σ1, σ2 ∈ 𝓗 be deterministic continuous functions. Denote

Xt=X0+0tα(s)ds+0tσ1(s)dB1,sH1+0tσ2(s)dB2,sH2, $$\begin{array}{} \displaystyle X_t= X_0 + \int_0^t\alpha (s)ds + \int_0^t\sigma_1(s)dB_{1,s}^{H_1} + \int_0^t\sigma_2(s)dB_{2,s}^{H_2}, \end{array}$$

where X0 is a constant and α(t) is a deterministic function with 0t|α(s)|ds<+. $\begin{array}{} \int_0^t|\alpha(s)|ds \lt +\infty. \end{array}$

Let F(t, x) be continuously differentiable with respect to t and twice continuously differentiable with respect to x. Then

F(t,Xt)=F(0,X0)+0tFs(s,Xs)ds+0tFx(s,Xs)dXs+120t2Fx2(s,Xs)ddsσ1s2+ddsσ2s2ds,0tT. $$\begin{array}{} \displaystyle F(t,X_t)= F(0,X_0) + \int_0^t\frac{\partial F}{\partial s}(s,X_s)ds + \int_0^t\frac{\partial F}{\partial x}(s,X_s)dX_s \\\displaystyle\qquad\quad\,\,\,\,+\frac{1}{2}\int_0^t\frac{\partial^2 F}{\partial x^2}(s,X_s)\left[\frac{d}{ds}\left\|\sigma_1\right\|_s^2 + \frac{d}{ds}\left\|\sigma_2\right\|_s^2\right]ds,\quad 0\leq t\leq T. \end{array}$$

Let us finish this section by giving a fractional Itô chain rule (see[[4], Theorem 3.2]).

Theorem 2.3

Assume that for j = 1, 2, the processes μj, αj and ϑj, satisfy

E0Tμj2(s)ds+0Tαj2(s)ds+0Tϑj2(s)ds<+. $$\begin{array}{} \displaystyle {\bf E}\left[\int_0^T\mu_j^2(s)ds + \int_0^T\alpha_j^2(s)ds + \int_0^T\vartheta_j^2(s)ds\right] \lt +\infty. \end{array}$$

Suppose that DtH1αj(s)andDtH2ϑj(s) $\begin{array}{} \mathbb{D}_t^{H_1}\alpha_j(s){\,\, and\,\, }\mathbb{D}_t^{H_2}\vartheta_j(s) \end{array}$ are continuously differentiable with respect to (s, t) ∈ [0, T]2 for almost all ω ∈ Ω. Let Xt and Yt be two processes satisfying

Xt=X0+0tμ1(s)ds+0tα1(s)dB1,sH1+0tϑ1(s)dB2,sH2,0tT,Yt=Y0+0tμ2(s)ds+0tα2(s)dB1,sH1+0tϑ2(s)dB2,sH2,0tT. $$\begin{array}{} \displaystyle X_t = X_0 + \int_0^t\mu_1(s)ds + \int_0^t\alpha_1(s)dB_{1,s}^{H_1} + \int_0^t\vartheta_1(s)dB_{2,s}^{H_2}, \quad\quad 0\leq t\leq T,\\\displaystyle\, Y_t = Y_0 + \int_0^t\mu_2(s)ds + \int_0^t\alpha_2(s)dB_{1,s}^{H_1} + \int_0^t\vartheta_2(s)dB_{2,s}^{H_2}, \quad\quad 0\leq t\leq T. \end{array}$$

If the following conditions hold:

E0T|DtH1αi(s)|2dsdt<+andE0T|DtH2ϑi(s)|2dsdt<+ $$\begin{array}{} \displaystyle {\bf E}\left[\int_0^T|\mathbb{D}_t^{H_1}\alpha_i(s)|^2dsdt\right] \lt +\infty\quad{and}\quad {\bf E}\left[\int_0^T|\mathbb{D}_t^{H_2}\vartheta_i(s)|^2dsdt\right] \lt +\infty \end{array}$$

then

XtYt=X0Y0+0tXsdYs+0tYsdXs+0tα1(s)DsH1Ys+α2(s)DsH1Xs+ϑ1(s)DsH2Ys+ϑ2(s)DsH2Xsds, $$\begin{array}{} \displaystyle X_tY_t = X_0Y_0 +\int_0^tX_sdY_s + \int_0^tY_sdX_s \\\displaystyle\qquad\,\,+\int_0^t\left[\alpha_1(s)\mathbb{D}_s^{H_1}Y_s + \alpha_2(s)\mathbb{D}_s^{H_1}X_s + \vartheta_1(s)\mathbb{D}_s^{H_2}Y_s + \vartheta_2(s)\mathbb{D}_s^{H_2}X_s \right]ds, \end{array}$$

which may be written formally as

dXtYt=XtdYt+YtdXt+α1(t)DtH1Yt+α2(t)DtH1Xt+ϑ1(t)DtH2Yt+ϑ2(t)DtH2Xtdt. $$\begin{array}{} \displaystyle d\left(X_tY_t\right) = X_tdY_t + Y_tdX_t +\left[\alpha_1(t)\mathbb{D}_t^{H_1}Y_t + \alpha_2(t)\mathbb{D}_t^{H_1}X_t + \vartheta_1(t)\mathbb{D}_t^{H_2}Y_t + \vartheta_2(t)\mathbb{D}_t^{H_2}X_t \right]dt. \end{array}$$

Fractional BSDEs
Definitions and notations

Let T > 0 be fixed throughout this paper. Let B1,tH1t[0,T] and B2,tH2t[0,T] $\begin{array}{} \left\{B_{1,t}^{H_1}\right\}_{t\in[0,T]}\text{ and }\left\{B_{2,t}^{H_2}\right\}_{t\in[0,T]} \end{array}$ be two mutually independent fractional Brownian motions processes, with respectively H1 12 $\begin{array}{} \frac{1}{2} \end{array}$ and H2 12 $\begin{array}{} \frac{1}{2} \end{array}$, defined on a probability space (Ώ,ℱ,P). Let N denote the class of P-null sets of ℱ.

we define

Fs=F0,sB1H1Fs,TB2H2,s[0,T], $$\begin{array}{} \displaystyle {\mathscr F}_{s}={\mathscr F}_{0,s}^{B_{1}^{H_1}} \vee {\mathscr F}_{s,T}^{B_{2}^{H_2}},\quad s\in[0,T], \end{array}$$

where for any process {ψt}t≥0, Fs,tψ $\begin{array}{} {\mathscr F}^\psi_{s,t} \end{array}$ = σ{ψrψs, srt} ∨ 𝒩.

For every ℱ-adapted random process α = (α(t))t≥0 with positive values, we define an increasing process (A(t))t≥0 by setting A(t) = 0tα2(s)ds. $\begin{array}{} \int_0^t\alpha^2(s)ds. \end{array}$

For a fixed β > 0, we will use the following sets:

Cpol1,2[0,T]×R $\begin{array}{} \mathscr{C}_{\mbox{pol}}^{1,2}\left([0, T]\times {\bf R}\right) \end{array}$ is the space of all 𝒞1,2-functions over [0, T] × R, which together with their derivative is of polynomial growth.

2(β, ℱt, R) = {ξ : Ώ → Rξ is ℱt − measurable, E [eβA(T)ξ2] < +∞},

𝒱[0,T] = {Y = ψ(⋅, η) : ψ ∈ 𝒞1,2([0, T] × R), ψt $\begin{array}{} \frac{\partial \psi}{\partial t} \end{array}$ is bounded, t ∈ [0, T]},

V~[0,T]β and V~[0,T]a,β $\begin{array}{} \widetilde{\cal V}_{[0,T]}^{\beta} \text{ and }\widetilde{\cal V}_{[0,T]}^{a,\beta} \end{array}$ are the completion of 𝒱[0,T] under the following norm

Yα,β=E0Tα2(t)eβA(t)|Yt|2dt1/2,Zβ=E0TeβA(t)|Zt|2dt1/2 $$\begin{array}{} \displaystyle \Vert Y\Vert_{\alpha,\beta} =\left({\bf E}\int_0^{T}\alpha^2(t) e^{\beta A(t)}|Y_t|^2dt\right)^{1/2}, \quad \Vert Z\Vert_\beta =\left({\bf E}\int_0^{T} e^{\beta A(t)}|Z_t|^2dt\right)^{1/2} \end{array}$$

B2([0,T],R)=V~[0,T]α,β×V~[0,T]β×V~[0,T]β $\begin{array}{} {\mathscr B}^2{([0,T],{\bf R})}=\widetilde{\cal V}_{[0,T]}^{\alpha,\beta}\times\widetilde{\cal V}_{[0,T]}^{\beta}\times\widetilde{\cal V}_{[0,T]}^{\beta} \end{array}$ is a Banach space with the norm

(Y,Z1,Z2)B2=Yα,β2+Z1β2+Z2β2. $$\begin{array}{} \displaystyle \Vert (Y,Z_1,Z_2)\Vert^2_{\mathscr B} =\Vert Y\Vert^2_{\alpha,\beta} + \Vert Z_1\Vert^2_\beta +\Vert Z_2\Vert^2_\beta. \end{array}$$

Let us consider

ηt=η0+0tb(s)ds+0tσ1(s)dB1,sH1+0tσ2(s)dB2,sH2,0tT $$\begin{array}{} \displaystyle \eta_t= \eta_0 + \int_0^tb(s)ds + \int_0^t\sigma_1(s)dB_{1,s}^{H_1} +\int_0^t\sigma_2(s)dB_{2,s}^{H_2}, \quad 0\le t\le T \end{array}$$

where the coefficients η0, b, σ1 and σ2 satisfy:

η0 is a given constant and b : [0, T] → R is a deterministic continuous function,

σ1, σ2:[0, T] → R are deterministic differentiable continuous functions, and σ1(t) ≠ 0, and σ2(t) ≠ 0 such that

|σ|t2=σ1t2+σ2t2,0tT, $$\begin{array}{} \displaystyle |\sigma|_t^2=\left\|\sigma_1\right\|_t^2 + \left\|\sigma_2\right\|_t^2, \quad 0\le t\le T, \end{array}$$

whereσit2=Hi(2Hi1)0t0t|uv|2Hi2σi(u)σi(v)dudv,i=1,2. $$\begin{array}{} \displaystyle \text{where} \quad\quad\quad\left\|\sigma_i\right\|_{t}^2=H_i(2H_i-1)\int_0^t\int_0^t |u-v|^{{2H_i}-2}\sigma_i(u)\sigma_i(v)dudv,\quad i=1,2. \end{array}$$

The next Remark will be useful in the sequel.

Remark 3.1

There exists a constant C0 ∈ (0, 1) such that inf0tTσ^i(t)σi(t)C0 $\begin{array}{} \inf_{0\le t\le T} \frac{\hat \sigma_i(t)}{\sigma_i(t)}\geq C_0 \end{array}$

where σ^i(t)=0tϕ(t,v)σi(v)dvi=1,2. $\begin{array}{} \hat{\sigma}_i(t)=\int_0^t\phi(t,v)\sigma_i(v)dv \quad i=1,2. \end{array}$

We are interested in the following one-dimensional fractional BSDE:

Yt=ξ+tTf(s,ηs,Ys,Z1,s,Z2,s)dstTZ1,sdB1,sH1tTZ2,sdB2,sH2,t[0,T]. $$\begin{array}{} \displaystyle Y_t = \xi + \int_t^Tf(s, \eta_s,Y_s, Z_{1,s},Z_{2,s})ds - \int_t^TZ_{1,s}dB_{1,s}^{H_1} - \int_t^TZ_{2,s}dB_{2,s}^{H_2},\quad t\in [0, T]. \end{array}$$

Definition 3.2

A triplet of processes (Y, Z1, Z2) is called a solution to fractional BSDE (3.2), if (Y, Z1, Z2) ∈ ℬ2([0, T], R) and satisfies eq.(3.2).

The next proposition will be useful in the sequel.

Proposition 3.3

Let (Y, Z1, Z2) be a solution of the fractional BSDE (3.2). Then for almost t ∈ [0, T], we have

DtH1Yt=σ^1(t)σ1(t)Z1,tandDtH2Yt=σ^2(t)σ2(t)Z2,t. $$\begin{array}{} \displaystyle \mathbb{D}^{H_1}_tY_t=\frac{\hat \sigma_1(t)}{\sigma_1(t)}Z_{1,t}\quad{and} \quad \mathbb{D}^{H_2}_tY_t=\frac{\hat \sigma_2(t)}{\sigma_2(t)}Z_{2,t}. \end{array}$$

The case of stochastic Lipschitz coefficient
Aassumptions

In the following, we assume that f satisfies assumptions (H1):

There exist three non-negative processes {μ(t)}0≤tT, {ν(t)}0≤tT and {ϑ(t)}0≤tT such that:

for any t ∈ [0, T], μ(t), ν(t), ϑ(t) are ℱt-measurable,

for any t ∈ [0, T], x,y,y,z1,z1,z2,z2R, $\begin{array}{} x,y,y',z_1,z'_1,z_2,z'_2\in{\bf R}, \end{array}$ we have

ft,x,y,z1,z2ft,x,y,z1,z2μ(t)|yy|+ν(t)|z1z1|+ϑ(t)|z2z2|. $$\begin{array}{} \displaystyle \left|f\left(t, x, y,z_1,z_2 \right) - f\left(t, x, y',z'_1,z'_2\right)\right|\leq \mu(t)|y\!-\!y'| + \nu(t)|z_1-z_1'| + \vartheta(t)|z_2-z_2'|. \end{array}$$

for any t ∈ [0, T], α2(t) = μ(t)+ν2(t)+ ϑ2(t) > 0.

Existence and uniqueness of the solution

The main result of this section is the following theorem:

Theorem 3.4

Let the assumptions (H1) be satisfied. Then the fractional BSDE (3.2) has a unique solution (Y, Z1, Z2) in the space2([0, T],R).

Proof

Let us consider the mapping Γ: ℬ2([0, T],R) → ℬ2([0, T],R) driven by (U, V1, V2) ⟼ Γ(U, V1, V2) = (Y, Z1, Z2).

We will show that the mapping Γ is a contraction, where (Y, Z1, Z2) is a solution of the following fractional BSDE:

Yt=tTf(s,ηs,Us,V1,s,V2,s)dstTZ1,sdB1,sH1tTZ2,sdB2,sH2,t[0,T]. $$\begin{array}{} \displaystyle Y_t = \int_t^Tf(s, \eta_s,U_s, V_{1,s},V_{2,s})ds - \int_t^T Z_{1,s}dB_{1,s}^{H_1} - \int_t^T Z_{2,s}dB_{2,s}^{H_2},\quad t\in [0, T]. \end{array}$$

Let us define for a process δ ∈ {Y, Z1, Z2, U, V1, V2}, δ = δδ′ where δV~[0,T]β $\begin{array}{} \delta'\in\widetilde{\mathscr V}_{[0,T]}^{\beta} \end{array}$ and the function

Δf(t)=f(t,ηt,Ut,V1,t,V2,t)f(t,ηt,Ut,V1,t,V2,t). $$\begin{array}{} \displaystyle \Delta f(t)\!=\!f(t,\!\eta_t, U_t, V_{1,t}, V_{2,t}) -f(t,\!\eta_t, U_t', V_{1,t}', V_{2,t}'). \end{array}$$

Then, the triplet (Y, Z1, Z2) solves the fractional BSDE

Y¯t=tTΔf(s)dstTZ¯1,sdB1,sH1tTZ¯2,sdB2,sH2,t[0,T]. $$\begin{array}{} \displaystyle \overline Y_t= \int_t^T\Delta f(s)ds - \int_t^T\overline Z_{1,s}dB_{1,s}^{H_1} - \int_t^T\overline Z_{2,s}dB_{2,s}^{H_2},\quad t\in [0, T]. \end{array}$$

By the fractional Itô chain rule, we have

|Y¯t|2=2tTY¯sΔf(s)ds2tTZ¯1,sDsH1Y¯sds2tTZ¯2,sDsH2Y¯sds2tTY¯sZ¯1,sdB1,sH12tTY¯sZ¯2,sdB2,sH2. $$\begin{array}{} \displaystyle |\overline Y_t|^2 = 2 \int_t^T \overline Y_s\Delta f(s)ds - 2 \int_t^T\overline Z_{1,s}\mathbb{D}^{H_1}_s\overline Y_sds - 2 \int_t^T\overline Z_{2,s}\mathbb{D}^{H_2}_s\overline Y_sds \\\displaystyle \qquad\,\,\,-2 \int_t^T\overline Y_s\overline Z_{1,s}dB_{1,s}^{H_1} - 2 \int_t^T\overline Y_s\overline Z_{2,s}d B_{2,s}^{H_2}. \end{array}$$

Applying the Itô formula to eβA(t)Yt2, we obtain that

eβA(t)|Y¯t|2=2tTeβA(s)Y¯sΔf(s)ds2tTeβA(s)Z¯1,sDsH1Y¯sds2tTeβA(s)Z¯2,sDsH2Y¯sds2tTeβA(s)Y¯sZ¯1,sdB1,sH12tTeβA(s)Y¯sZ¯2,sdB2,sH2βtTeβA(s)α2(s)|Y¯s|2ds. $$\begin{array}{} \displaystyle e^{\beta A(t)}|\overline Y_t|^2 = 2\int_t^Te^{\beta A(s)}\overline Y_s\Delta f(s)ds - 2\int_t^Te^{\beta A(s)}\overline Z_{1,s}\mathbb{D}^{H_1}_s\overline Y_sds - 2\int_t^Te^{\beta A(s)}\overline Z_{2,s}\mathbb{D}^{H_2}_s\overline Y_sds\\\displaystyle\qquad\qquad\,\,\,\,\,-2\int_t^Te^{\beta A(s)}\overline Y_s\overline Z_{1,s}dB_{1,s}^{H_1} - 2\int_t^Te^{\beta A(s)}\overline Y_s\overline Z_{2,s}dB_{2,s}^{H_2} - \beta\int_t^T e^{\beta A(s)}\alpha^2(s)|\overline Y_s|^2ds. \end{array}$$

It is known that, by Proposition 3.3, DsH1Y¯s=σ^1(s)σ1(s)Z¯1,s and DsH2Y¯s=σ^2(s)σ2(s)Z¯2,s. $\begin{array}{} \mathbb{D}^{H_1}_s\overline Y_s=\frac{\hat{\sigma}_1(s)}{\sigma_1(s)}\overline Z_{1,s}\text{ and }\mathbb{D}^{H_2}_s\overline Y_s=\frac{\hat{\sigma}_2(s)}{\sigma_2(s)}\overline Z_{2,s}. \end{array}$

Then, we have

EeβA(t)|Y¯t|2+βEtTeβA(s)α2(s)|Y¯s|2ds+2EtTeβA(s)σ^1(s)σ1(s)|Z¯1,s|2+σ^2(s)σ2(s)|Z¯2,s|2ds=2EtTeβA(s)Y¯sΔf(s)ds. $$\begin{array}{} \displaystyle {\bf E}\left[e^{\beta A(t)}|\overline Y_t|^2\right] + \beta{\bf E}\int_t^T e^{\beta A(s)}\alpha^2(s)|\overline Y_s|^2ds + 2{\bf E}\int_t^Te^{\beta A(s)}\left[\frac{\hat{\sigma}_1(s)}{\sigma_1(s)}|\overline Z_{1,s}|^2 + \frac{\hat{\sigma}_2(s)}{\sigma_2(s)}|\overline Z_{2,s}|^2\right]ds \\\displaystyle \qquad\qquad\qquad\,\,\,= 2{\bf E}\int_t^Te^{\beta A(s)}\overline Y_s\Delta f(s)ds. \end{array}$$

Using standard estimates and assumption (H1.1), we obtain that

2EtTeβA(s)Y¯sΔf(s)ds2EtTeβA(s)|Y¯s|[μ(s)|U¯s|+ν(s)|V¯1,s|+ϑ(s)|V¯2,s|]ds1C0EtTeβA(s)[μ(s)+ν2(s)+ϑ2(s)]|Y¯s|2ds+C0EtTeβA(s)μ(s)|U¯s|2ds+C0EtTeβA(s)[|V¯1,s|2+|V¯2,s|2]ds, $$\begin{array}{} \displaystyle 2{\bf E}\int_t^T\!e^{\beta A(s)}\overline Y_s\Delta f(s)ds \leq 2{\bf E}\int_t^T\!e^{\beta A(s)}|\overline Y_s|\bigg[\mu(s)|\overline U_s|+ \nu(s)|\overline V_{1,s}| + \vartheta(s)|\overline V_{2,s}| \bigg]ds\\\displaystyle\qquad\qquad\qquad\qquad\qquad\,\,\,\leq \frac{1}{C_0}{\bf E}\int_t^T\!e^{\beta A(s)}\bigg[\mu(s)+ \nu^2(s)+\vartheta^2(s)\bigg]|\overline Y_s|^2ds\\\displaystyle\qquad\qquad\qquad\qquad\qquad\,\,\,+ C_0{\bf E}\int_t^T\!e^{\beta A(s)}\mu(s)|\overline U_s|^2ds + C_0{\bf E}\int_t^T\!e^{\beta A(s)}\bigg[|\overline V_{1,s}|^2 + |\overline V_{2,s}|^2\bigg]ds, \end{array}$$

and using in addition asumption (H1.2),

2EtTeβA(s)Y¯sΔf(s)dsC0EtTeβA(s)[α2(s)|U¯s|2+|V¯1,s|2+|V¯2,s|2]ds+1C0EtTeβA(s)α2(s)|Y¯s|2ds $$\begin{array}{} \displaystyle 2{\bf E}\int_t^T\!e^{\beta A(s)}\overline Y_s\Delta f(s)ds \leq C_0{\bf E}\int_t^T\!e^{\beta A(s)}\bigg[\alpha^2(s)|\overline U_s|^2 +|\overline V_{1,s}|^2 + |\overline V_{2,s}|^2\bigg]ds\\\displaystyle \qquad\qquad\qquad\qquad\qquad\,\,\,\,+\frac{1}{C_0}{\bf E}\int_t^T\!e^{\beta A(s)}\alpha^2(s)|\overline Y_s|^2ds \end{array}$$

Using the abovementioned inequality, from (3.5) we deduce that

EeβA(t)|Y¯t|2+βEtTeβA(s)α2(s)|Y¯s|2ds+2EtTeβA(s)[σ^1(s)σ1(s)|Z¯1,s|2+σ^2(s)σ2(s)|Z¯2,s|2]dsC0EtTeβA(s)[α2(s)|U¯s|2+|V¯1,s|2+|V¯2,s|2]ds+1C0EtTeβA(s)α2(s)|Y¯s|2ds $$\begin{array}{} \displaystyle {\bf E}\left[e^{\beta A(t)}|\overline Y_t|^2\right] + \beta{\bf E}\int_t^T e^{\beta A(s)}\alpha^2(s)|\overline Y_s|^2ds + 2{\bf E}\int_t^Te^{\beta A(s)}\bigg[\frac{\hat{\sigma}_1(s)}{\sigma_1(s)}|\overline Z_{1,s}|^2 + \frac{\hat{\sigma}_2(s)}{\sigma_2(s)}|\overline Z_{2,s}|^2\bigg]ds \\\displaystyle\qquad\qquad\qquad\,\, \leq C_0{\bf E}\int_t^T\!e^{\beta A(s)}\bigg[\alpha^2(s)|\overline U_s|^2 +|\overline V_{1,s}|^2 + |\overline V_{2,s}|^2\bigg]ds\\\displaystyle\qquad\qquad\qquad\,\, +\frac{1}{C_0}{\bf E}\int_t^T\!e^{\beta A(s)}\alpha^2(s)|\overline Y_s|^2ds \end{array}$$

By Remark 3.1, we obtain

EeβA(t)|Y¯t|2+βEtTeβA(s)α2(s)|Y¯s|2ds+2C0EtTeβA(s)[|Z¯1,s|2+|Z¯2,s|2]dsC0EtTeβA(s)[α2(s)|U¯s|2+|V¯1,s|2+|V¯2,s|2]ds+1C0EtTeβA(s)α2(s)|Y¯s|2ds $$\begin{array}{} \displaystyle {\bf E}\left[e^{\beta A(t)}|\overline Y_t|^2\right] + \beta{\bf E}\int_t^T e^{\beta A(s)}\alpha^2(s)|\overline Y_s|^2ds + 2C_0{\bf E}\int_t^Te^{\beta A(s)}\bigg[|\overline Z_{1,s}|^2 + |\overline Z_{2,s}|^2\bigg]ds \\\displaystyle\qquad\qquad\qquad\,\,\leq C_0{\bf E}\int_t^T\!e^{\beta A(s)}\bigg[\alpha^2(s)|\overline U_s|^2 +|\overline V_{1,s}|^2 + |\overline V_{2,s}|^2\bigg]ds\\\displaystyle\qquad\qquad\qquad\,\,+\frac{1}{C_0}{\bf E}\int_t^T\!e^{\beta A(s)}\alpha^2(s)|\overline Y_s|^2ds \end{array}$$

Taking β such that β=2C0+1C0, $\begin{array}{} \beta =2C_0 +\frac{1}{C_0}, \end{array}$ we get

E0TeβA(s)[α2(s)|Y¯s|2+|Z¯1,s|2+|Z¯2,s|2]ds12E0TeβA(s)[α2(s)|U¯s|2+|V¯1,s|2+|V¯2,s|2]ds. $$\begin{array}{} \displaystyle {\bf E}\int_0^{T}\!e^{\beta A(s)}\bigg[\alpha^2(s)|\overline Y_s|^2+|\overline Z_{1,s}|^2+|\overline Z_{2,s}|^2\bigg]ds \leq \frac{1}{2}{\bf E}\int_0^{T}\!e^{\beta A(s)}\bigg[\alpha^2(s)|\overline U_s|^2+ |\overline V_{1,s}|^2+|\overline V_{2,s}|^2\bigg]ds. \end{array}$$

Thus, the mapping (U, V1, V2) ⟼ Γ(U, V1, V2) = (Y, Z1, Z2) determined by the fractional BSDE (3.2) is a strict contraction on ℬ2([0, T],R). Using the fixed point principle, we deduce the solution to the fractional BSDE (3.2) that exists uniquely. This completes the proof.□

The case of weak stochastic Lipschitz coefficient
Aassumptions

In the following, we assume that f satisfies assumptions (H2):

There exist three non-negative processes {μ(t)}0≤tT, {ν(t)}0≤tT and {ϑ(t)}0≤tT such that:

for any t ∈ [0, T], μ(t), ν(t), ϑ(t) are ℱt-measurable,

for any t ∈ [0, T], x,y,y,z1,z1,z2,z2 $\begin{array}{} \displaystyle x,y,y',z_1,z'_1,z_2,z'_2 \end{array}$R, we have

|ft,x,y,z1,z2ft,x,y,z1,z2|μ12(t)ρ12t,|yy|2+ν(t)|z1z1|+ϑ(t)|z2z2|, $$\begin{array}{} \displaystyle \bigg|f\left(t, x, y,z_1,z_2 \right) - f\left(t, x, y',z'_1,z'_2\right)\bigg|\!\!\!\!&\displaystyle\leq \mu^{\frac{1}{2}}(t)\rho^{\frac{1}{2}}\left(t,|y\!-\!y^\prime|^2\right)\\ &\displaystyle+ \nu(t)|z_1-z_1^\prime| + \vartheta(t)|z_2-z_2^\prime|, \end{array}$$

where ρ(t, ν) : [0, T] × R+R+ satisfies:

For fixed t ∈ [0, T], ρ(t, ⋅) is a continuous, concave and nondecreasing such that

ρ(t,0)=0,andα>0αρ(t,ν)=ρ(t,αν). $$\begin{array}{} \displaystyle \rho(t, 0) = 0,\quad\quad\text{and}\quad\forall\alpha \gt 0\quad \alpha\rho(t, \nu)=\rho(t, \alpha\nu). \end{array}$$

The ordinary differential equation (ODE)

ν(t)=ρ(t,ν(t)),v(T)=0, $$\begin{array}{} \displaystyle \nu^\prime(t) = -\rho(t, \nu(t)), \quad v(T) =0, \end{array}$$

has a unique solution ν(t) = 0, 0 ≤ tT.

There exist two continuous and non-negative functions a and b such that

ρ(t,ν)a(t)+b(t)νand0T[a(t)+b(t)]dt<. $$\begin{array}{} \displaystyle \rho(t, \nu)\le a(t)+ b(t)\nu \quad \text{and} \quad \int_0^{T} [a(t) + b(t)] dt \lt \infty. \end{array}$$

for any t ∈[0, T], α2(t) = μ(t) + ν2(t) + ϑ2(t) > 0.

The integrability condition holds:

E0TeβA(t)f(t,ηt,0,0)2α2(t)dt<+,t[0,T]. $$\begin{array}{} \displaystyle {\bf E}\int_0^{T}\!e^{\beta A(t)}\frac{\left|f(t,\eta_t,0,0)\right|^2}{\alpha^2(t)}dt \lt +\infty,\quad t\in[0,T]. \end{array}$$

Existence and uniqueness of the solution

For n ≥ 1, we can construct the Picard approximate sequence of eq.(3.2) as follows

Yt0=0,Zt,10=0,Zt,20=0t[0,T]Ytn=ξ+tTf(s,ηs,Ysn1,Z1,sn,Z2,sn)dstTZ1,sndB1,sH1tTZ2,sndB2,sH2,t[0,T]. $$\begin{array}{} \displaystyle \left\{ \begin{array}{} Y_t^0=0,\quad Z_{t,1}^0=0 ,\quad Z_{t,2}^0=0 \quad t\in [0,T]\\ Y_t^n = \xi + \!\int_t^Tf(s, \eta_s, Y_s^{n-1}, Z_{1,s}^n, Z_{2,s}^n)ds - \int_t^TZ_{1,s}^ndB_{1,s}^{H_1} - \!\int_t^TZ_{2,s}^ndB_{2,s}^{H_2}, \quad t\in[0,T]. \\ \end{array} \right. \end{array}$$

Thanks to Theorem 3.4, this sequence is well defined.

Lemma 3.5

Assume that assumptions (H2) are true. Then for all n, m ≥ 1 and t ∈ [0, T], we have

EeβA(t)|Ytn+mYtn|2tTρs,EeβA(s)|Ysn+m1Ysn1|2ds. $$\begin{array}{} \displaystyle {\bf E}\left[e^{\beta A(t)}|Y_t^{n+m} - Y_t^{n}|^2\right] \le \int_t^{T} \rho\left(s, {\bf E}\left[e^{\beta A(s)}|Y_s^{n+m-1} - Y_s^{n-1}|^2\right]\right)ds. \end{array}$$

Proof

Let us define for a process δ ∈ {Y, Z1, Z2}, n, m ≥ 1, δn,m = δn+mδn and the function Δ f(n,m) (s) = f(s,ηs,Ysn+m1,Z1,sn+m,Z2,sn+m)f(s,ηs,Ysn1,Z1,sn,Z2,sn) $\begin{array}{} \displaystyle f(s, \eta_s, Y_s^{n+m-1}, Z_{1,s}^{n+m}, Z_{2,s}^{n+m}) - f(s, \eta_s, Y_s^{n-1}, Z_{1,s}^n, Z_{2,s}^n) \end{array}$.

Then, it is obvious that (Y¯n,m,Z¯1n,m,Z¯2n,m) $\begin{array}{} \displaystyle (\overline Y^{n,m}, \overline Z_1^{n,m}, \overline Z_2^{n,m}) \end{array}$ solves the fractional BSDE

Y¯tn,m=tTΔf(n,m)(s)dstTZ¯1,sn,mdB1,sH1tTZ¯2,sn,mdB2,sH2,t[0,T]. $$\begin{array}{} \displaystyle \overline Y_t^{n,m}=\int_t^T\Delta f^{(n, m)}(s)ds -\int_t^T\overline Z_{1,s}^{n,m}dB_{1,s}^{H_1} - \int_t^T\overline Z_{2,s}^{n,m}dB_{2,s}^{H_2}, \quad t\in[0,T]. \end{array}$$

By the fractional Itô chain rule, we have

|Y¯tn,m|2=2tTY¯sn,mΔf(n,m)(s)ds2tTZ¯1,sn,mDsH1Y¯sn,mds2tTZ¯2,sn,mDsH2Y¯sn,mds2tTY¯sn,mZ¯1,sn,mdB1,sH12tTY¯sn,mZ¯2,sn,mdB2,sH2. $$\begin{array}{} \displaystyle |\overline Y_t^{n,m}|^2\!\!\!\!\! &\displaystyle= 2\int_t^T \overline Y_s^{n,m}\Delta f^{(n, m)}(s)ds - 2\int_t^T\overline Z_{1,s}^{n,m}\mathbb{D}^{H_1}_s\overline Y_s^{n,m}ds - 2\int_t^T\overline Z_{2,s}^{n, m}\mathbb{D}^{H_2}_s\overline Y_s^{n,m}ds \\ &\displaystyle-2\int_t^T\overline Y_s^{n,m}\overline Z_{1,s}^{n, m}dB_{1,s}^{H_1} - 2\int_t^T\overline Y_s^{n,m}\overline Z_{2,s}^{n,m}d B_{2,s}^{H_2}. \end{array}$$

Applying Itô formula to eβA(t)|Y¯tn,m|2 $\begin{array}{} \displaystyle e^{\beta A(t)}|\overline Y_t^{n,m}|^2 \end{array}$, we obtain that

eβA(t)|Y¯tn,m|2=2tTeβA(s)Y¯sn,mΔf(n,m)(s)ds2tTeβA(s)Z¯1,sn,mDsH1Y¯sn,mds2tTeβA(s)Z¯2,sn,mDsH2Y¯sn,mds2tTeβA(s)Y¯sn,mZ¯1,sn,mdB1,sH12tTeβA(s)Y¯sn,mZ¯2,sn,mdB2,sH2βtTeβA(s)α2(s)|Y¯sn,m|2ds. $$\begin{array}{} \displaystyle e^{\beta A(t)}|\overline Y_t^{n,m}|^2\!\!\!\! &\displaystyle= 2\int_t^Te^{\beta A(s)}\overline Y_s^{n,m}\Delta f^{(n, m)}(s)ds - 2\int_t^Te^{\beta A(s)}\overline Z_{1,s}^{n,m}\mathbb{D}^{H_1}_s\overline Y_s^{n,m}ds \\ &\displaystyle- 2\int_t^Te^{\beta A(s)}\overline Z_{2,s}^{n, m}\mathbb{D}^{H_2}_s\overline Y_s^{n,m}ds -2\int_t^Te^{\beta A(s)}\overline Y_s^{n,m}\overline Z_{1,s}^{n, m}dB_{1,s}^{H_1}\\ &\displaystyle- 2\int_t^Te^{\beta A(s)}\overline Y_s^{n,m}\overline Z_{2,s}^{n,m}dB_{2,s}^{H_2} - \beta\int_t^T e^{\beta A(s)}\alpha^2(s)|\overline Y_s^{n,m}|^2ds. \end{array}$$

By Proposition 3.3, we have

EeβA(t)|Y¯tn,m|2+EtTeβA(s)[βα2(s)|Y¯sn,m|2+2σ^1(s)σ1(s)|Z¯1,sn,m|2+2σ^2(s)σ2(s)|Z¯2,sn,m|2]ds=2EtTeβA(s)Y¯sn,mΔf(n,m)(s)ds. $$\begin{array}{} \displaystyle {\bf E}\left[e^{\beta A(t)}|\overline Y_t^{n,m}|^2\right] &\!\!\!\!\displaystyle+ {\bf E}\int_t^T e^{\beta A(s)}\bigg[\beta\alpha^2(s)|\overline Y_s^{n,m}|^2 + 2\frac{\hat{\sigma}_1(s)}{\sigma_1(s)}|\overline Z_{1,s}^{n,m}|^2+ 2\frac{\hat{\sigma}_2(s)}{\sigma_2(s)}|\overline Z_{2,s}^{n, m}|^2\bigg]ds \\ &\displaystyle= 2{\bf E}\int_t^Te^{\beta A(s)}\overline Y_s^{n,m}\Delta f^{(n, m)}(s)ds. \end{array}$$

Applying standard estimates and asumption (H2.1), we obtain that

2EtTeβA(s)Y¯sn,mΔf(n,m)(s)ds2EtTeβA(s)|Y¯sn,m|μ12(s)ρ12(s,|Ysn+m1Ysn1|2)ds+2EtTeβA(s)|Y¯sn,m|[ν(s)|Z¯1,sn,m|+ϑ(s)|Z¯2,sn,m|]ds1C0EtTeβA(s)μ(s)+ν2(s)+ϑ2(s)|Y¯sn,m|ds+C0EtTeβA(s)[ρ(s,|Ysn+m1Ysn1|2)+|Z¯1,sn,m|2+|Z¯2,sn,m|2]ds $$\begin{array}{} \begin{split}{} \displaystyle 2{\bf E}\int_t^Te^{\beta A(s)}\overline Y_s^{n,m}&\Delta f^{(n, m)}(s)ds \leq 2{\bf E}\int_t^Te^{\beta A(s)}|\overline Y_s^{n,m}| \mu^{\frac{1}{2}}(s)\rho^{\frac{1}{2}}(s,|Y_s^{n+m-1}-Y_s^{n-1}|^2)ds\\ &+ 2{\bf E}\int_t^Te^{\beta A(s)}|\overline Y_s^{n,m}| \bigg[\nu(s)|\overline Z_{1,s}^{n,m}|+\vartheta(s)|\overline Z_{2,s}^{n, m}|\bigg]ds\\ &\leq \frac{1}{C_0}{\bf E}\int_t^Te^{\beta A(s)}\left[\mu(s)+ \nu^2(s)+\vartheta^2(s)\right]|\overline Y_s^{n,m}|ds\\ &+ C_0{\bf E}\int_t^Te^{\beta A(s)}\bigg[\rho(s,|Y_s^{n+m-1}-Y_s^{n-1}|^2) + |\overline Z_{1,s}^{n,m}|^2+|\overline Z_{2,s}^{n, m}|^2\bigg]ds \end{split} \end{array}$$

Therefore, we can write

2EtTeβA(s)Y¯sn,mΔf(n,m)(s)ds1C0EtTeβA(s)α2(s)|Y¯sn,m|ds+C0EtTeβA(s)|Z¯1,sn,m|2ds+C0EtTeβA(s)|Z¯2,sn,m|2ds+C0EtTeβA(s)ρ(s,|Ysn+m1Ysn1|2)ds. $$\begin{array}{} \begin{split}{} \displaystyle 2{\bf E}\int_t^Te^{\beta A(s)}\overline Y_s^{n,m}&\Delta f^{(n, m)}(s)ds\leq \frac{1}{C_0}{\bf E}\int_t^Te^{\beta A(s)}\alpha^2(s)|\overline Y_s^{n,m}|ds +C_0{\bf E}\int_t^Te^{\beta A(s)}|\overline Z_{1,s}^{n,m}|^2ds \\ &+ C_0{\bf E}\int_t^Te^{\beta A(s)}|\overline Z_{2,s}^{n, m}|^2ds+ C_0{\bf E}\int_t^Te^{\beta A(s)}\rho(s,|Y_s^{n+m-1}-Y_s^{n-1}|^2)ds. \end{split} \end{array}$$

Using the abovementioned inequality and Remark 3.1, from (3.13), we deduce that

EeβA(t)|Y¯tn,m|2+βEtTeβA(s)α2(s)|Y¯sn,m|2ds+2C0EtTeβA(s)[|Z¯1,sn,m|2+|Z¯2,sn,m|2]ds1C0EtTeβA(s)α2(s)|Y¯sn,m|ds+C0EtTeβA(s)[|Z¯1,sn,m|2+|Z¯2,sn,m|2]ds+C0EtTeβA(s)ρ(s,|Ysn+m1Ysn1|2)ds. $$\begin{array}{} \begin{split}{} \displaystyle {\bf E}\left[e^{\beta A(t)}|\overline Y_t^{n,m}|^2\right] &+ \beta{\bf E}\int_t^T e^{\beta A(s)}\alpha^2(s)|\overline Y_s^{n,m}|^2ds + 2C_0{\bf E}\int_t^T e^{\beta A(s)}\bigg[|\overline Z_{1,s}^{n,m}|^2+ |\overline Z_{2,s}^{n, m}|^2\bigg]ds \\ &\leq \frac{1}{C_0}{\bf E}\int_t^Te^{\beta A(s)}\alpha^2(s)|\overline Y_s^{n,m}|ds + C_0{\bf E}\int_t^Te^{\beta A(s)}\bigg[|\overline Z_{1,s}^{n,m}|^2+|\overline Z_{2,s}^{n, m}|^2\bigg]ds\\ &+ C_0{\bf E}\int_t^Te^{\beta A(s)}\rho(s,|Y_s^{n+m-1}-Y_s^{n-1}|^2)ds. \end{split} \end{array}$$

Choosing β such that β > 1C0 $\begin{array}{} \displaystyle \frac{1}{C_0} \end{array}$, we have

EeβA(t)|Ytn+mYtn|2C0tTρs,EeβA(s)|Ysn+m1Ysn1|2ds. $$\begin{array}{} \displaystyle {\bf E}\left[e^{\beta A(t)}|Y_t^{n+m} - Y_t^{n}|^2\right] \le C_0\int_t^{T} \rho\left(s, {\bf E}\left[e^{\beta A(s)}|Y_s^{n+m-1} - Y_s^{n-1}|^2\right]\right)ds. \end{array}$$

Finally, by Remark 3.1 we obtain

EeβA(t)|Ytn+mYtn|2tTρs,EeβA(s)|Ysn+m1Ysn1|2ds. $$\begin{array}{} \displaystyle {\bf E}\left[e^{\beta A(t)}|Y_t^{n+m} - Y_t^{n}|^2\right] \le \int_t^{T} \rho\left(s, {\bf E}\left[e^{\beta A(s)}|Y_s^{n+m-1} - Y_s^{n-1}|^2\right]\right)ds. \end{array}$$

Lemma 3.6

Let the assumption (H2) be satisfied. Then there exists a constant M ≥ 0 and T1 ∈ [0, T] such that

n1,EeβA(t)|Ytn|2M,t[T1,T]. $$\begin{array}{} \displaystyle \forall n\ge1,\quad {\bf E} \left[e^{\beta A(t)}|Y_t^{n}|^2\right]\le M, \qquad t\in[ T_1 ,T]. \end{array}$$

Proof

Using the same method as in the proof of Lemma 3.5, we obtain that

EeβA(t)|Ytn|2+βEtTeβA(s)|Ysn|2ds+2C0EtTeβA(s)[|Z1,sn|2+|Z2,sn|2]dsEeβA(T)|ξ|2+2EtTeβA(s)Ysnf(s,ηs,Ysn1,Z1,sn,Z2,sn)ds. $$\begin{array}{} \begin{split}{} \displaystyle {\bf E}\left[e^{\beta A(t)}|Y_t^n|^2\right] &+ \beta{\bf E}\int_t^Te^{\beta A(s)}|Y_s^n|^2ds +2 C_0{\bf E}\int_t^Te^{\beta A(s)}\bigg[ | Z_{1,s}^{n}|^2+|Z_{2,s}^{n}|^2\bigg]ds\nonumber\\ &\le{\bf E}\left[e^{\beta A(T)}|\xi|^2\right] + 2{\bf E}\int_t^Te^{\beta A(s)}Y_s^nf(s,\eta_s,Y_s^{n-1}, Z_{1,s}^n, Z_{2,s}^n)ds. \end{split} \end{array}$$

Applying standard estimates and asumption (H2.1), we obtain that

2EtTeβA(s)Ysnf(s,ηs,Ysn1,Z1,sn,Z2,sn)dsC0EtTeβA(s)[ρ(s,|Ysn1|2)+|Z¯1,sn,m|2+|Z2,sn|2]ds+EtTeβA(s)|f(s,ηs,0,0,0)|2α2(s)ds+1+1C0EtTeβA(s)α2(s)|Ysn|ds $$\begin{array}{} \begin{split}{} \displaystyle 2{\bf E}\int_t^Te^{\beta A(s)}Y_s^nf(s,\eta_s,Y_s^{n-1}, Z_{1,s}^n, Z_{2,s}^n)ds &\le C_0{\bf E}\int_t^Te^{\beta A(s)}\bigg[\rho(s,|Y_s^{n-1}|^2) + |\overline Z_{1,s}^{n,m}|^2+|Z_{2,s}^{n}|^2\bigg]ds\\ + {\bf E}\int_t^Te^{\beta A(s)}\frac{|f(s,\eta_s,0,0,0)|^2}{\alpha^2(s)}ds &+ \left(1+\frac{1}{C_0}\right){\bf E}\int_t^Te^{\beta A(s)}\alpha^2(s)|Y_s^{n}|ds \end{split} \end{array}$$

Using the abovementioned inequality, from (3.14) we deduce that

EeβA(t)|Ytn|2+[β(1+1C0)]EtTeβA(s)|Ysn|2ds+C0EtTeβA(s)[|Z1,sn|2+|Z2,sn|2]dsΛt+C0tTρ(s,EeβA(s)|Ysn1|2)ds, $$\begin{array}{} \begin{split}{} \displaystyle {\bf E}\left[e^{\beta A(t)}|Y_t^n|^2\right] &+ [\beta -(1+\frac{1}{C_0})]{\bf E}\int_t^Te^{\beta A(s)}|Y_s^n|^2ds + C_0{\bf E}\int_t^Te^{\beta A(s)}\bigg[ | Z_{1,s}^{n}|^2+|Z_{2,s}^{n}|^2\bigg]ds\\ &\le \Lambda_t + C_0\int_t^T\rho(s,{\bf E} \left[e^{\beta A(s)}|Y_s^{n-1}|^2\right])ds, \end{split} \end{array}$$

where Λt=EeβA(T)|ξ|2+tTeβA(s)|f(s,ηs,0,0,0)|2α2(s)ds $\begin{array}{} \displaystyle \Lambda_t={\bf E}\left(e^{\beta A(T)}|\xi|^2 + \int_t^Te^{\beta A(s)}\frac{|f(s,\eta_s,0,0,0)|^2}{\alpha^2(s)}ds \right) \end{array}$.

Choosing β such that β 1C0 $\begin{array}{} \displaystyle \frac{1}{C_0} \end{array}$ > 1 we have

EeβA(t)|Ytn|2Λt+tTρ(s,EeβA(s)|Ysn1|2)ds,t[0,T]. $$\begin{array}{} \displaystyle {\bf E}\left[e^{\beta A(t)}|Y_t^n|^2\right]\le \Lambda_t + \int_t^T\rho(s,{\bf E} \left[e^{\beta A(s)}|Y_s^{n-1}|^2\right])ds,\quad t\in[0,T]. \end{array}$$

Finally letM=2Λ0+20Ta(s)ds0. $$\begin{array}{} \displaystyle \text{Finally let}\quad\quad\quad\quad M=2\Lambda_0 + 2\int_0^Ta(s)ds\geq 0. \end{array}$$

Arguing as in [[9], Lemma 2], we choose T1 such that

Λ0+tTρ(s,M)dsM,t[T1,T]. $$\begin{array}{} \displaystyle \Lambda_0 + \int_t^T\rho(s,M)ds\leq M, \quad\quad t\in[T_1,T]. \end{array}$$

By inequality (3.16) and (3.18), for t ∈ [T1, T], we have

EeβA(t)Yt12Λt+tTρs,0dsΛ0M,EeβA(t)Yt22Λt+tTρs,E[eβA(s)|Ys1|2]dsΛ0+tTρs,MdsM,EeβA(t)Yt32Λt+tTρs,E[eβA(s)|Ys2|2]dsΛ0+tTρs,MdsM. $$\begin{array}{} \displaystyle {\bf E}\left[e^{\beta A(t)}\left|Y_t^1\right|^2\right] \leq \Lambda_t + \int_t^T\rho\left(s, 0 \right)ds \leq \Lambda_0 \leq M,\\ \displaystyle {\bf E}\left[e^{\beta A(t)}\left|Y_t^2\right|^2\right] \leq \Lambda_t + \int_t^T\rho\left(s,{\bf E} [e^{\beta A(s)}|Y_s^1|^2]\right)ds\leq \Lambda_0 + \int_t^T\rho\left(s, M\right)ds \leq M,\\\displaystyle {\bf E}\left[e^{\beta A(t)}\left|Y_t^3\right|^2\right] \leq \Lambda_t + \int_t^T\rho\left(s,{\bf E} [e^{\beta A(s)}|Y_s^2|^2]\right)ds \leq\Lambda_0 + \int_t^T\rho\left(s, M \right)ds \leq M. \end{array}$$

Hence, by induction, one can prove that for all n ≥ 1,

EeβA(t)|Ytn|2M,T1tT. $$\begin{array}{} \displaystyle {\bf E} \left[e^{\beta A(t)}|Y_t^{n}|^2\right]\le M, \quad T_1\leq t\leq T. \end{array}$$

The main result of this section is the following theorem:

Theorem 3.7

Let the assumptions (H2) be satisfied. Then, the fractional BSDE (3.2) has a unique solution (Y, Z1, Z2) in the space2([0, T], R).

Proof

We split the proof into two parts.

Using the constant M given by (3.17), we consider the sequence (φn)n≥1 given by

φ0(t)=tTρs,Mds,φn+1(t)=tTρs,φn(s)ds,n0,t[T1,T]. $$\begin{array}{} \displaystyle \varphi_0(t) =\int_t^{T}\rho\left(s, M\right)ds, \quad\quad \varphi_{n+1}(t) = \int_t^{T}\rho\left(s, \varphi_{n}(s)\right)ds,\quad n\geq 0,\quad t\in[T_1,T]. \end{array}$$

Then for all t ∈ [T1, T], from the proof of Lemma 3.6, one can deduce that

φ0(t)=tTρs,MdsM,φ1(t)=tTρs,φ0(s)dstTρs,Mds=φ0(t)M,φ2(t)=tTρs,φ1(s)dstTρs,φ0(s)ds=φ1(t)M. $$\begin{array}{} \begin{split}{} \displaystyle \varphi_0(t) &= \int_t^T\rho\left(s, M\right)ds\leq M,\\ \varphi_1(t) &= \int_t^T\rho\left(s, \varphi_0(s) \right)ds\leq \int_t^T\rho\left(s, M\right)ds= \varphi_0(t)\leq M,\\ \varphi_2(t) &= \int_t^T\rho\left(s, \varphi_1(s) \right)ds\leq \int_t^T\rho\left(s, \varphi_0(s)\right)ds= \varphi_1(t)\leq M. \end{split} \end{array}$$

By induction, one can prove that for all n ≥ 1, φn(t) satisfies

0φn+1(t)φn(t)φ1(t)φ0(t)M. $$\begin{array}{} \displaystyle 0\leq\varphi_{n+1}(t)\leq\varphi_n(t)\leq\cdot\cdot\cdot\leq\varphi_1(t)\leq\varphi_0(t)\leq M. \end{array}$$

Then {φn(t), t ∈ [T1, T]}n≥1 is uniformly bounded. On the other hand, for all n ≥ 1 and t1, t2 ∈ [T1, T], we obtain

φn(t1)φn(t2)=t1t2ρs,φn1(s)dst1t2ρs,Mds. $$\begin{array}{} \displaystyle \left|\varphi_{n}(t_1) - \varphi_{n}(t_2)\right|=\left|\int_{t_1}^{t_2}\rho\left(s, \varphi_{n-1}(s)\right)ds \right|\leq\left|\int_{t_1}^{t_2}\rho\left(s, M\right)ds \right|. \end{array}$$

Since, for fixed v, ∈ 0Tρs,vds<+ $\begin{array}{} \int_0^T\rho\left(s, v\right)ds \lt + \infty \end{array}$. So

supnφn(t1)φn(t2)0ast1t20, $$\begin{array}{} \displaystyle \sup_n \left|\varphi_{n}(t_1) - \varphi_{n}(t_2)\right|\rightarrow 0 \quad as\quad \left|t_1 - t_2\right|\rightarrow 0, \end{array}$$

which means that {φn(t), t ∈ [T1, T]}n≥1 is an equicontinuous family of function. Therefore, by the Arzelá-Ascoli theorem, we can define by φ(t) the limit function of (φn(t))n≥1.

By (3.10), one knows that φ(t) = 0, t ∈ [T1, T].

Now for all t ∈[T1, T], n, m ≥ 1, in view of Lemmas 3.5 and 3.6, we have

EeβA(t)Ytn2M,EeβA(t)Yt1+mYt12tTρs,E[eβA(s)Ysm2]dstTρs,Mds=φ0(t)M,EeβA(t)Yt2+mYt22tTρs,EeβA(s)Ys1+mYs12dsφ1(t)M,EeβA(t)Yt3+mYt32tTρs,EeβA(s)Ys2+mYs22dsφ2(t)M. $$\begin{array}{} \begin{split}{} \displaystyle &{\bf E}\left[ e^{\beta A(t)}\left|Y_t^n\right|^2\right] \leq M,\\ &{\bf E}\left[e^{\beta A(t)}\left|Y_t^{1+m} - Y_t^1 \right|^2\right] \leq \int_t^T\rho\left(s,{\bf E} [e^{\beta A(s)}\left|Y_s^m\right|^2]\right)ds \leq\int_t^T\rho\left(s, M\right)ds = \varphi_0(t) \leq M,\\ &{\bf E}\left[e^{\beta A(t)}\left|Y_t^{2+m} - Y_t^2 \right|^2\right] \leq\int_t^T\rho\left(s,{\bf E}\left[e^{\beta A(s)}\left|Y_s^{1+m} - Y_s^1 \right|^2\right] \right)ds \leq \varphi_1(t) \leq M,\\ &{\bf E}\left[ e^{\beta A(t)}\left|Y_t^{3+m} - Y_t^3 \right|^2\right] \leq \int_t^T\rho\left(s, {\bf E}\left[e^{\beta A(s)}\left|Y_s^{2+m} - Y_s^2 \right|^2\right] \right)ds \leq \varphi_2(t) \leq M. \end{split} \end{array}$$

By induction, we can derive that

m1,EeβA(t)Ytn+mYtn2φn1(t),t[T1,T]. $$\begin{array}{} \displaystyle m\geq 1,\quad{\bf E}\left[e^{\beta A(t)}\left|Y_t^{n+m} - Y_t^n \right|^2\right] \leq \varphi_{n-1}(t), \quad t\in[T_1,T]. \end{array}$$

Therefore we have

supt[T1,T]EeβA(t)Ytn+mYtn2supt[T1,T]φn1(t)=φn1(T1)0n. $$\begin{array}{} \displaystyle \sup_{t\in[T_1,T]}{\bf E}\left[e^{\beta A(t)}\left|Y_t^{n+m} - Y_t^n \right|^2\right]\leq\sup_{t\in[T_1,T]} \varphi_{n-1}(t)=\varphi_{n-1}(T_1) \rightarrow 0 \quad n\rightarrow \infty. \end{array}$$

Exploiting the argument developed in [[1], Theorem 3.9] we prove that the sequence Yn,Z1n,Z2n $\begin{array}{} \displaystyle \left(Y^n,Z_1^n,Z_2^n\right) \end{array}$ is a Cauchy sequence in ℬ2([T1, T], R). Letting n → + ∞ in eq.(3.11), we obtain

Yt=ξ+tTf(s,ηs,Ys,Z1,s,Z2,s)dstTZ1,sdB1,sH1tTZ2,sdB2,sH2,T1tT. $$\begin{array}{} \displaystyle Y_t = \xi + \!\int_t^Tf(s,\eta_s, Y_s, Z_{1,s},Z_{2,s})ds - \int_t^TZ_{1,s}dB_{1,s}^{H_1} - \!\int_t^TZ_{2,s}dB_{2,s}^{H_2}, \quad T_1\leq t\leq T. \end{array}$$

In other words, we have shown the existence of the solution (Y, Z1, Z2) to fractional BSDE (3.2) on [T1, T]. Finally, by iteration, one can deduce the existence on [Tλ(TT1), T], for each λ, and therefore the existence on the whole [0, T].

Let Yti,Z1,ti,Z2,ti0tT $\begin{array}{} \displaystyle \left(Y_t^i, Z_{1,t}^i, Z_{2,t}^i\right)_{0\leq t\leq T} \end{array}$, i = 1, 2, be two solutions of fractional BSDE (3.2).

Using the same method as in the proof of Lemma (3.5), we have

EeβA(t)|Yt1Yt2|2+C0EtTeβA(s)|Z1,s1Z1,s2|2ds+C0EtTeβA(s)|Z2,s1Z2,s2|2dstTρ(s,EeβA(s)|Ys1Ys2|2)ds,t[0,T]. $$\begin{array}{} \begin{split}{} \displaystyle {\bf E}\left[e^{\beta A(t)}|Y_t^1 - Y_t^2|^2\right] &+ C_0{\bf E}\int_t^Te^{\beta A(s)}| Z_{1,s}^1 - Z_{1,s}^2|^2ds + C_0{\bf E}\int_t^Te^{\beta A(s)}|Z_{2,s}^1 - Z_{2,s}^2|^2ds \\ &\leq \int_t^T\rho(s,{\bf E} \left[e^{\beta A(s)}|Y_s^1 - Y_s^2|^2\right])ds,\quad t\in[0,T]. \end{split} \end{array}$$

Therefore

EeβA(t)|Yt1Yt2|2tTρs,EeβA(s)|Ys1Ys2|2ds,t[0,T] $$\begin{array}{} \begin{split}{} \displaystyle {\bf E}\left[e^{\beta A(t)}|Y_t^{1} - Y_t^{2}|^2\right] \le \int_t^{T} \rho\left(s, {\bf E}\left[e^{\beta A(s)}|Y_s^{1} - Y_s^{2}|^2\right]\right)ds,\quad t\in[0,T] \end{split} \end{array}$$

From the comparison theorem of ODE, we know that Eeβt|Yt1Yt2|2r(t) $\begin{array}{} \displaystyle {\bf E}\left[e^{\beta t}|Y_t^1 - Y_t^2|^2\right]\leq r(t) \end{array}$, where r(t) is the maximum of solution of (3.10) on [0, T]. As a consequence, we have Yt1=Yt2 $\begin{array}{} \displaystyle Y_t^1=Y_t^2 \end{array}$ for t ∈[0, T]. From (3.19), we deduce Z1,t1,Z2,t1=Z1,t2,Z2,t2 $\begin{array}{} \displaystyle \left(Z_{1,t}^1, Z_{2,t}^1\right)= \left(Z_{1,t}^2, Z_{2,t}^2\right) \end{array}$ for t ∈[0, T]. This completes the proof. □

eISSN:
2444-8656
Language:
English
Publication timeframe:
Volume Open
Journal Subjects:
Life Sciences, other, Mathematics, Applied Mathematics, General Mathematics, Physics