Open Access

Analysis of Aerodynamic Phenomena in Selected Quarter of Building Development in Warsaw Downtown with Reference to Air Pollution


Cite

1. Aristodemou E. et al. (2020), Turbulent flows and pollution dispersion around tall buildings using adaptive large eddy simulation (LES), „Buildings” 10(10), DOI: 10.3390/BUILDINGS10070127.10.3390/buildings10070127 Search in Google Scholar

2. Blocken B. et al. (2011), Application of computational fluid dynamics in building performance simulation for the outdoor environment: An overview, „Journal of Building Performance Simulation” 4(2), pp. 157–184. DOI: 10.1080/19401493.2010.513740.10.1080/19401493.2010.513740 Search in Google Scholar

3. Blocken B. and Carmeliet J. (2004), Pedestrian wind environment around buildings: Literature review and practical examples, „Journal of Thermal Envelope and Building Science” 28(2), pp. 107–159. DOI: 10.1177/1097196304044396.10.1177/1097196304044396 Search in Google Scholar

4. Blocken B., Stathopoulos T. and van Beeck, J.P.A.J. (2016), Pedestrian-level wind conditions around buildings: Review of wind-tunnel and CFD techniques and their accuracy for wind comfort assessment, „Building and Environment” 100, pp. 50–81. DOI: 10.1016/j.buildenv.2016.02.004.10.1016/j.buildenv.2016.02.004 Search in Google Scholar

5. Borrego C. et al. (2006), How urban structure can affect city sustainability from an air quality perspective, „Environmental Modelling and Software” 21(4), pp. 461–467. DOI: 10.1016/j.envsoft.2004.07.009.10.1016/j.envsoft.2004.07.009 Search in Google Scholar

6. Corrigan C. E. et al. (2008), Capturing vertical profiles of aerosols and black carbon over the Indian Ocean using autonomous unmanned aerial vehicles, „Atmospheric Chemistry and Physics”, 8(3), pp. 737–747. DOI: 10.5194/acp-8-737-2008.10.5194/acp-8-737-2008 Search in Google Scholar

7. Dąbrowiecki P. et al. (2021), Impact of Air Pollution on Lung Function among Preadolescent Children in Two Cities in Poland, „Journal of Clinical Medicine 10(11), p. 2375. DOI: 10.3390/jcm10112375.10.3390/jcm10112375 Search in Google Scholar

8. Duangsuwan S. and Jamjareekulgarn P. (2020), Development of drone real-time air pollution monitoring for mobile smart sensing in areas with poor accessibility, „Sensors and Materials, 32(2), pp. 511–520. DOI: 10.18494/SAM.2020.2450.10.18494/SAM.2020.2450 Search in Google Scholar

9. Duthinh D. and Simiu E. (2011), The Use of Wind Tunnel Measurements in Building Design, „Wind Tunnels and Experimental Fluid Dynamics Research”, (July). DOI: 10.5772/18670.10.5772/18670 Search in Google Scholar

10. En N.E. and Normy P. (2008), PN-EN 1991-1-4. Oddziaływania na konstrukcje. Część 1-4: Oddziaływania ogólne. Oddziaływania wiatru. Search in Google Scholar

11. Franke J. et al. (2007), Best practice guideline for the CFD simulation of flows in the urban environment, COST action. Available at: http://cat.inist.fr/?aModele=afficheN&cpsidt=23892111%5Cn http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Best+practice+guideline+for+the+CFD+simulation+of+flows+in+the+urban+environment#0. Search in Google Scholar

12. Fronczak M. (2018), Kształtowanie struktur urbanistycznych na terenach zagrożonych smogiem i zanieczyszczeniem powietrza, „Przestrzeń, Urbanistyka, Architektura” 1, pp. 255–270. DOI: 10.4467/00000000pua.18.018.8626.10.4467/00000000PUA.18.018.8626 Search in Google Scholar

13. Generalna Inspekcja Ochorny Środowiska (no date), Bieżące dane pomiarowe, available at: http://powietrze.gios.gov.pl/pjp/current. Search in Google Scholar

14. Gumowski K. et al. (2015), Comparative analysis of numerical and experimental studies of the airflow around the sample of urban development, „Bulletin of the Polish Academy of Sciences: Technical Sciences” 63(3), pp. 729–737. DOI: 10.1515/bpasts-2015-0084.10.1515/bpasts-2015-0084 Search in Google Scholar

15. International Renewable Energy Agency (no date), Global Wind Atlas, available at: https://irena.masdar.ac.ae/GIS/?&tool=dtu:gwa&map=103. Search in Google Scholar

16. Jędrzejewski M., Pocwierz M. and Zielonko-Jung K. (2017), The problem of airflow around building clusters in different configurations, „Archive of Mechanical Engineering” 64(3), pp. 401–418. DOI: 10.1515/meceng-2017-0024.10.1515/meceng-2017-0024 Search in Google Scholar

17. Khaled M. and Dewidar K. (2010), Anti Smog Architecture: a New Catalyst for Cleaner, in: International Conference on Engineering Solutions for Sustainable Development, American University in Cairo, Cairo, doi: 10.13140/RG.2.1.4614.4242. Search in Google Scholar

18. Kiciński J. (2018), Smog – Poland’s pressing problem. Anti-smog technologies in 3rd International Conference on Energy and Environmental Protection, AGH University of Science and Technology, Kraków, pp. 1–7. Search in Google Scholar

19. Kleczkowski P. (2019), Smog w Polsce. Przyczyny, skutki, przeciwdziałanie, Wydawnictwo Naukowe PWN, Warszawa. Search in Google Scholar

20. Landolsi T. et al. (2019), Pollution monitoring system using position-aware drones with 802.11 Ad-Hoc networks, 2018 IEEE Conference on Wireless Sensors, ICWiSe 2018, IEEE, pp. 40–43. DOI: 10.1109/ICWISE.2018.8633285.10.1109/ICWISE.2018.8633285 Search in Google Scholar

21. Łukasz F. et al. (2019), Badania modelowe dynamicznego działania na warstwę przyziemną atmosfery - wieże wentylacyjne w konfiguracji liniowej na terenie określonej chropowatości, in Dynamiczne przewietrzanie i redukcja smogu obszarów zurbanizowanych ze szczególnym uwzględnieniem miasta Krakowa, Politechnika Krakowska, Kraków. Search in Google Scholar

22. Mazurek H. and Badyda A. (2018), Smog. Kondekwencje zdrowotne zanieczyszczeń powietrza. PZWL Wydawnictwo Lekarskie, Warszawa. Search in Google Scholar

23. Michalak A. (2020), Energy Poverty in the Context of Smog As Exemplified By Poland, GEOLINKS Conference proceedings, Book 2 Vol. 2, 2, pp. 195–204. DOI: 10.32008/geolinks2020/b2/v2/19.10.32008/GEOLINKS2020/B2/V2/19 Search in Google Scholar

24. O., U. S. (no date) Dron antysmogowy czyli System Obserwacji i Wspomagania Analizy powietrza “SOWA.”, available at: https://usm.net.pl/produkty/1-system-obserwacji-i-wspomagania-analizypowietrza-sowa. Search in Google Scholar

25. Irwin P., Scott D., Denoon R. (2013), Wind Tunnel Testing of High-Rise Buildings, Routledge.10.4324/9781315879529 Search in Google Scholar

26. Rada Miasta Stołecznego Warszawy (2010) Uchwała NR XCIV/2749/2010 Rady Miasta Stołecznego Warszawy z dnia 9 listopada 2010 r. w sprawie miejscowego planu zagospodarowania przestrzennego w rejonie Pałacu Kultury i Nauki w Warszawie. Search in Google Scholar

27. Reiter S. (2008), Validation Process for CFD Simulations of Wind Around Buildings, European Built Environment CAE Conference, (November), pp. 1–18, available at: http://orbi.ulg.ac.be/handle/2268/20400. Search in Google Scholar

28. Reiter S. (2010), Assessing wind comfort in urban planning, „Environment and Planning B: Planning and Design”, 37(5), pp. 857–873. doi: 10.1068/b35154.10.1068/b35154 Search in Google Scholar

29. Sanz-Rodrigo J., van-Beeck J.P.A.J., Dezsö-Weidinger G. (2007), Wind tunnel simulation of the wind conditions inside bidimensional forest clear-cuts. Application to wind turbine siting, „Journal of Wind Engineering and Industrial Aerodynamics” 95(7), pp. 609–634. DOI: doi.org/10.1016/j.jweia.2007.01.001. Search in Google Scholar

30. Schwartz J., Laden F. and Zanobetti A. (2002), The Concentration – Response Relation between PM 2 . 5 and Daily Deaths, „Environmental Health Perspectives”, 110(10), pp. 1025–1029. Search in Google Scholar

31. Stanaszek-Tomal, E. (2021), Anti-Smog Building and Civil Engineering Structures, „Processes”, 9 (8), p. 1446. DOI: 10.3390/pr9081446.10.3390/pr9081446 Search in Google Scholar

32. Stathopoulos T. (2009), Wind and comfort, in 5th European and African Conference on Wind Engineering, EACWE 5, Proceedings. Search in Google Scholar

33. Stathopoulos T. (2011), Introduction to environmental aerodynamics, in „CISM International Centre for Mechanical Sciences, Courses and Lectures”, Concordia University, Montreal, pp. 3–30. doi: 10.1007/978-3-7091-0953-3_1.10.1007/978-3-7091-0953-3_1 Search in Google Scholar

34. Szymocha S. and Osuchowski J. (2019), Pomiary przy pomocy bezzałogowych statków powietrznych. Diagnostyka linii wysokiego napięcia, Fundacja na Rzecz Czystej Energii, Poznań. Search in Google Scholar

35. Tominaga, Y. et al. (2008), AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings, „Journal of Wind Engineering and Industrial Aerodynamics”, 96(10–11), pp. 1749–1761. DOI: 10.1016/j.jweia.2008.02.058.10.1016/j.jweia.2008.02.058 Search in Google Scholar

36. Villa, T. et al. (2016), An overview of small unmanned aerial vehicles for air quality measurements: Present applications and future prospectives, „Sensors”, 16(7), pp. 12–20. doi: 10.3390/s16071072.10.3390/s16071072 Search in Google Scholar

37. Xia, Q. et al. (2013), Effects of building lift-up design on pedestrian wind environment, in Proceedings of the 8th Asia-Pacific Conference on Wind Engineering, APCWE 2013, pp. 993–1002. DOI: 10.3850/978-981-07-8012-8_128.10.3850/978-981-07-8012-8_128 Search in Google Scholar

eISSN:
2719-793X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Architecture and Design, Architecture, Architects, Buildings, Urbanism, History, Arts, general