1. bookVolume 1 (2017): Issue s1 (October 2017)
    EBTNA Utility Gene Test on Ophthalmology
Journal Details
License
Format
Journal
eISSN
2564-615X
First Published
30 Jan 2017
Publication timeframe
4 times per year
Languages
English
access type Open Access

Genetic testing for Leber congenital amaurosis

Published Online: 27 Oct 2017
Volume & Issue: Volume 1 (2017) - Issue s1 (October 2017) - EBTNA Utility Gene Test on Ophthalmology
Page range: 63 - 65
Journal Details
License
Format
Journal
eISSN
2564-615X
First Published
30 Jan 2017
Publication timeframe
4 times per year
Languages
English
Abstract

We studied the scientific literature and disease guidelines in order to summarize the clinical utility of genetic testing for Leber congenital amaurosis (LCA). LCA is mostly inherited in an autosomal recessive manner, rarely in an autosomal dominant manner, with an overall prevalence of 2-3/100,000 live births, and is caused by mutations in the AIPL1, CEP290, CRB1, CRX, GDF6, GUCY2D, IFT140, IMPDH1, IQCB1, KCNJ13, LCA5, LRAT, NMNAT1, RD3, RDH12, RPE65, RPGRIP1, SPATA7 and TULP1 genes. Clinical diagnosis involves ophthalmological examination and electrophysiological testing (electroretinography - ERG). The genetic test is useful for confirmation of diagnosis, differential diagnosis, couple risk assessment and access to clinical trials.

1. Weleber RG, Francis PJ, Trzupek KM, Beattie C. Leber Congenital Amaurosis. In: RA Pagon, MP Adam, HH Ardinger, SE Wallace, A Amemiya, LJH Bean, et al. GeneReviews®. Seattle (WA) 1993-2017.Search in Google Scholar

2. Perrault I, Rozet JM, Gerber S, Ghazi I, Ducroq D, Souied E, et al. Spectrum of retGC1 mutations in Leber’s congenital amaurosis. Eur J Hum Genet. 2000 Aug;8(8):578-82. PubMed PMID: 10951519.10.1038/sj.ejhg.5200503Search in Google Scholar

3. Fazzi E, Signorini SG, Scelsa B, Bova SM, Lanzi G. Leber’s congenital amaurosis: an update. Eur J Paediatr Neurol. 2003;7(1):13-22. PubMed PMID: 12615170.10.1016/S1090-3798(02)00135-6Search in Google Scholar

4. Eisenberger T, Neuhaus C, Khan AO, Decker C, Preising MN, Friedburg C, et al. Increasing the yield in targeted next-generation sequencing by implicating CNV analysis, non-coding exons and the overall variant load: the example of retinal dystrophies. PLoS One. 2013 Nov 12;8(11):e78496. PubMed PMID: 24265693; PubMed Central PMCID: PMC3827063.Search in Google Scholar

5. Bujakowska K, Audo I, Mohand-Saïd S, Lancelot ME, Antonio A, Germain A, et al. CRB1 mutations in inherited retinal dystrophies. Hum Mutat. 2012 Feb;33(2):306-15. PubMed PMID: 22065545; PubMed Central PMCID: PMC3293109. Epub 2011/12/27.Search in Google Scholar

6. Chen B, Gagnon M, Shahangian S, Anderson NL, Howerton DA, Boone JD. Good laboratory practices for molecular genetic testing for heritable diseases and conditions. MMWR Recomm Rep. 2009 Jun;58(RR-6):1-37; PubMed PMID: 19521335.Search in Google Scholar

7. Stone EM, Aldave AJ, Drack AV, Maccumber MW, Sheffield VC, Traboulsi E, Weleber RG. Recommendations for genetic testing of inherited eye diseases: report of the American Academy of Ophthalmology task force on genetic testing. Ophthalmology. 2012 Nov;119(11):2408-10. PubMed PMID: 22944025. Epub 2012/09/01.10.1016/j.ophtha.2012.05.04722944025Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo